
1 | P A G E Satya Kaveti

2 | P A G E Satya Kaveti

Table of Content

TABLE OF CONTENT .. 2

1.LANGUAGE FUNDAMENTALS... 5

FEATURES OF JAVA .. 5

JAVA – JDK, JRE AND JVM ... 7

IDENTIFIERS ... 9

KEYWORDS ... 10

COMMENTS ... 10

DATATYPES ... 10

LITERALS ... 11

ARRAYS .. 13

TYPES OF VARIABLES .. 15

MAIN() METHOD ... 17

OPERATORS .. 17

FLOW CONTROL .. 20

FUNDAMENTALS – INTERVIEW QUESTIONS .. 25

DATA TYPES ... 27

2.CLASS DECLARATION & ACCESS MODIFIERS ... 29

JAVA SOURCE FILE STRUCTURE .. 29

JAVA ACCESS MODIFIERS ... 29

CLASS MODIFIERS – APPLICABLE ONLY FOR CLASSES .. 29

MEMBER MODIFIERS – APPLICABLE FOR METHODS & VARIABLES .. 31

NESTED CLASSES ... 34

3. INTERFACES .. 39

INTERFACE ENHANCEMENTS ... 41

4.OOPS ... 44

1.DATA HIDING ... 44

2.ABSTRACTION ... 44

3. ENCAPSULATION ... 44

4. INHERITANCE ... 45

4. STATIC & INSTANCE CONTROL FLOWS ... 51

5. CONSTRUCTOR ... 54

5.EXCEPTION HANDLING .. 57

DEFAULT EXCEPTION HANDLING .. 57

EXCEPTION HIERARCHY .. 58

USING TRY, CATCH, FINALLY ... 59

USER DEFINED EXCEPTIONS .. 63

EXCEPTION HANDLING WITH METHOD OVERRIDING IN JAVA .. 64

JAVA 1.7 EXCEPTION HANDLING ENHANCEMENTS ... 64

EXCEPTION HANDLING INTERVIEW QUESTIONS ... 67

6. JAVA. LANG PACKAGE .. 68

1.OBJECT CLASS ... 69

2.STRING CLASS.. 75

3,4.STRINGBUFFER, STRINGBUILDER CLASSES ... 78

5.WRAPPER CLASSES .. 81

3 | P A G E Satya Kaveti

GARBAGE COLLECTION .. 84

JAVA REFLECTION API (JAVA.LANG.CLASS) ... 94

INTERVIEW QUESTIONS ... 95

7. JAVA.IO .. 97

BYTE STREAMS ... 98

CHARACTER STREAMS ... 99

BUFFERED STREAMS ... 100

DATA STREAMS .. 101

OBJECT STREAMS ... 102

PRINTF AND FORMAT METHODS ... 105

JAVA NIO(NON-BLOCKING I/O)-1.4 .. 105

8.THREADS .. 107

INTRODUCTION TO MULTI-THREADING ... 107

WHAT IS THREAD .. 108

THREAD LIFE CYCLES (THREAD STATES) ... 109

JAVA.LANG.THREAD CLASS .. 110

JAVA.LANG.RUNNABLE INTERFACE ... 112

INTERRUPTING A THREAD ... 114

JOINING A THREAD (JOIN () METHOD) .. 116

THREAD PRIORITY .. 117

DAEMON THREAD... 117

THREAD GROUP .. 118

SYNCHRONIZATION .. 119

INTER THREAD COMMUNICATION .. 120

CALLABLE INTERFACE .. 124

9. JAVA.UTIL.CONCURRENCY ... 125

LOCK INTERFACE .. 125

READWRITELOCK INTERFACE ... 131

CONDITIONS ... 132

10. EXECUTOR FRAMEWORK – THREADPOOLS ... 136

TYPES OF THREADPOOLS .. 139

EXECUTORSERVICE API .. 142

SYNCHRONIZATION UTILITIES – MORE OPTIONS FOR DOING SYNCHRONIZATION ... 154

ATOMIC VARIABLES .. 165

TERMS .. 169

THREADS INTERVIEW QUESTIONS ... 170

11.COLLECTIONS FRAMEWORK ... 180

TRADITIONAL DATA STRUCTURES ... 180

TYPES OF DATA STRUCTURES ... 180

SORTING ALGORITHMS .. 189

SEARCHING ALGORITHMS ... 194

JAVA COLLECTIONS FRAMEWORK.. 195

LIST ... 196

MAP .. 204

SET .. 220

COMPARABLE & COMPARATOR .. 226

QUEUE ... 234

DEQUE (DOUBLE ENDED QUEUE) .. 236

4 | P A G E Satya Kaveti

CONCURRENT COLLECTIONS .. 237

JAVA.UTIL.ARRAYS ... 242

JAVA.UTIL.COLLECTIONS CLASS .. 243

12. STREAM API ... 245

FUNCTIONAL INTERFACES ... 245

LAMBDAS ... 246

STREAMS .. 248

13.JAVA UI (APPLETS/SWINGS).. 259

1. APPLET BASICS ... 259

2. SWING BASICS .. 260

3. AWT (ABSTRACT WINDOWING TOOLKIT) ... 262

4. EVENTS HANDLING .. 264

5. COMPONENTS .. 266

FEATURES BY VERSION ... 271

JAVA 4 (2002) .. 271

JAVA 5 (2005) .. 278

JAVA 7 (2011) .. 285

JAVA 8 (2014) .. 286

JAVA 9 (2017) .. 288

JAVA10 (MARCH 2018) .. 289

JAVA 11 (SEPTEMBER 2018) ... 290

JAVA 12 (MARCH 2019) ... 290

JAVA 13 (SEPTEMBER 2019).. 290

JAVA 14 (MARCH 2020) ... 291

JAVA 15 (SEPTEMBER 2020) ... 291

JAVA 16 (MARCH 2021) – LATEST ... 292

REF. ... 294

Change Table Content --> Top --> REFERENCES (5th Tab) -->update content

5 | P A G E Satya Kaveti

1.Language Fundamentals
Java is a platform independent programming language which is introduced by James Gosling and his

teammates in the year 1991.

First, they want to develop programming language for the Setup boxes and small embedded systems in

the year of 1991.they named it as “Green talk”, because the file extension is ‘.gt’. After that they renamed

as “Oak”, it’s a tree name. But they faced some trademark issues in 1995 they renamed it as “Java”

The first beta version of java released in 1995.

Features of Java

1.Simple – No Pointers Dude!

Compare with previous Object-oriented language C++ they removed many confusing and/or rarely-used

features e.g., explicit pointers, operator overloading etc. So now no confusions, clean syntax makes java

as Simple

2.Object-oriented – All about java Basics

Java based on OOPs. below are concepts of OOPs are:

• Object

• Class

• Inheritance

• Polymorphism

• Abstraction

• Encapsulation

3.Platform Independent – OS doesn’t matter!

A platform is the hardware or software environment in

which a program runs. There are two types of platforms

software-based and hardware-based. Java provides

software-based platform.

Java code can be run on multiple platforms

e.g.Windows,Linux,Sun Solaris,Mac/OS etc.

Java code is compiled by the compiler and converted

into bytecode. This byte-code is a platform independent

code because it can be run on multiple platforms

http://www.smlcodes.com/wp-content/uploads/2016/09/image1.png

6 | P A G E Satya Kaveti

4. Secured – U can Hack OS, but you can’t hack Java Byte code

The Java platform is designed with security features built into the language and runtime system such as

static type-checking at compile time and runtime checking (security manager), which let you create

applications that can’t be invaded from outside. You never hear about viruses attacking Java applications.

5. Robust – Strong, Error Free always

Robust simply means strong. Java uses strong memory management. There is lack of pointers that avoids

security problem. There is automatic garbage collection in java. There is exception handling and type

checking mechanism in java. All these points make java robust.

6. Architecture-neutral – 64-bit, 32-bit, xxx-bit doesn’t matter I will work

The language like JAVA can run on any of the processor irrespective of their architecture and vendor

7. Portable

We may carry the java bytecode to any platform.

8. High-performance

Java is faster than traditional interpretation since byte code is “close” to native code still somewhat slower

than a compiled language (e.g., C++)

9. Distributed

We can create distributed applications in java. RMI and EJB are used for creating distributed applications.

We may access files by calling the methods from any machine on the internet.

10. Multi-threaded

A thread is like a separate program, executing concurrently. We can write Java programs that deal with

many tasks at once by defining multiple threads. The main advantage of multi-threading is that it shares

the same memory. Threads are important for multi-media, Web applications etc.

Class Path:

CLASSPATH is a parameter that tells the JVM where to look for classes and packages.it is specific to Java

only. But PATH is specific to system.

When you have set of jar files which are always required during your application runtime, then it’s

probably best to add them in machine’s environment variable 'CLASSPATH'.

During application runtime, application class loader will always scan the jar files and classes at specified

paths in this variable.

7 | P A G E Satya Kaveti

Java – JDK, JRE and JVM

1.Loading the Class:

When a Java program is converted into .class file by Java compiler ClassLoader is responsible to load that

class file from file system or any other location.

Our Java class is depending up on any other class, let’s say JdbcDriver.class, it will search by following

Class Loaders

• Bootstrap ClassLoader - JRE/lib/rt.jar

First bootstrap class loader tries to find the class. It scans the rt.jar file in JRE lib folder.

• Extension ClassLoader - JRE/lib/ext or any directory denoted by java.ext.dirs

If class is not found, then extension class loader searches the class file in inside jre\lib\ext folder

• Application ClassLoader - CLASSPATH environment variable, -classpath or -cp option

Again, if class is not found then application ClassLoader searches all the Jar files and classes

in CLASSPATH environment variable of system.

If class is found by any loader then class is loaded by class loader; else ClassNotFoundException is

thrown

8 | P A G E Satya Kaveti

2.Linking: once Class is loaded it performs below operations

• Bytecode verifier will verify whether the generated bytecode is proper or not.

• Prepare (memory allocation): allocates memory to static variables & methods.

• Resolve – All symbolic memory references are replaced with original references from Method Area.

3.Initialization: In prepare only memory is allocated, here all static variables will be assigned with the

original values and the static blocks will be executed.

fields (Data members) and methods are also known as class members.

• Method Area: all Class level Data members, Method definitions stored here.

• Heap All Objects & instance variable Data stored Here.

• Stacks: All Methods executions & Thread Executions done here. Stores local variables, and

intermediate results. Each thread has its own JVM stack, created simultaneously as the thread is

created. So, all such local variables are called thread-local variables.

• PC registers: store the physical memory address of the statements which is currently executing.

In Java, each thread has its separate PC register.

• Native Method Stack: Java supports and uses native code as well. Many low-level codes is

written in languages like C and C++. Native method stacks hold the instruction of native code.

All code assigned to JVM is executed by an execution engine. The execution engine reads the byte code

and executes line by line. It uses two inbuilt tools – interpreter and JIT compiler to convert the

bytecode to machine code and execute it.

1. Interpreter converts each byte-code instruction to corresponding native instruction.

It directly executes the bytecode only one instruction at a time and does not perform any

optimization.

2. JIT Compiler takes a block of code (not one statement at a time as interpreter), optimize the

code and then translate it to optimized machine code. To improve performance, it will

Optimizes the bytecode

3. Garbage Collection: Once code Execution done, it will clear the memory.

• Java Native Interface (JNI): It is an interface which interacts with the Native Method Libraries

and provides the native libraries (C, C++) required for the execution.

• Native Method Libraries: It is a collection of the Native Libraries which are required by the

Execution Engine.

9 | P A G E Satya Kaveti

JVM = Just a Specification. Hotspot VM is implementation of IT

JRE = JVM + libraries to run Java application.

JDK = JRE + tools to develop Java Application.

 Development Tools

• Basic Tools (javac, java, javadoc, apt,

appletviewer, jar, jdb, javah, javap, extcheck)

• Security Tools (keytool, jarsigner, policytool,

kinit, klist, ktab)

• Internationalization Tools (native2ascii)

• Remote Method Invocation (RMI) Tools (rmic,

rmiregistry, rmid, serialver)

• Java IDL and RMI-IIOP Tools (tnameserv, idlj,

orbd, servertool)

• Java Deployment Tools (pack200, unpack200)

• Java Plug-in Tools (htmlconverter)

• Java Web Start Tools (javaws)

Identifiers

public class Hello {
public static void main(String[] args) {
 System.out.println("Hello Java!");
}
}

In Above Hello, main, args are called Identifiers

Rules for defining Identifiers

• Only Allowed characters are

▪ a-z

▪ A-Z

▪ 0-9

▪ $

▪ –

• if we are using any other symbol, we will get Compile time error “IllegalCharacter”.

• Identifier should not start with Number.

• There is no length limit for java identifiers, but it is not recommended to take more than 15 length.

• All Java class names, Interface names can use as an Identifier, but it’s not recommended

public class Test {
 int Runnable = 10;
 int Integer = 20;
}

https://www.cs.mun.ca/java-api-1.5/tooldocs/index.html#basic
https://www.cs.mun.ca/java-api-1.5/tooldocs/index.html#security
https://www.cs.mun.ca/java-api-1.5/tooldocs/index.html#intl
https://www.cs.mun.ca/java-api-1.5/tooldocs/index.html#rmi
https://www.cs.mun.ca/java-api-1.5/tooldocs/index.html#idl
https://www.cs.mun.ca/java-api-1.5/tooldocs/index.html#deployment
https://www.cs.mun.ca/java-api-1.5/tooldocs/index.html#plugin
https://www.cs.mun.ca/java-api-1.5/tooldocs/index.html#javaws

10 | P A G E Satya Kaveti

Keywords

Some identifiers are reserved to associate some functionality or to represent values, such type of reserved

identifiers are called “ReservedWords” / “Keywords”

abstract continue for new switch

assert*** default goto* package synchronized

boolean do if private this

break double implements protected throw

byte else import public throws

case enum**** instanceof return transient

catch extends int short try

char final interface static void

class finally long strictfp** volatile

const* float native super while

* not used
** added in 1.2
*** added in 1.4
**** added in 5.0

Comments

// Single Line Comment

The compiler ignores everything from // to the end of the line

/* Multi line comment */

The compiler ignores everything from /* to */.

/** documentation */

This indicates a documentation comment (doc comment, for short). The compiler ignores this kind of

comment, just like it ignores comments that use /* and */. The javadoc tool uses doc comments when

preparing automatically generated documentation.

javadoc <file_name> or javadoc <package_name> or javadoc *.java

Datatypes

Data Type Default Value Default size

Boolean FALSE 1 bit

Char '\u0000' 2 byte

Byte 0 1 byte

Short 0 2 byte

Int 0 4 byte

Long 0L 8 byte

Float 0.0f 4 byte

Double 0.0d 8 byte

int: The size of int is always fixed irrespective of platform. Hence the chance of failing java program is very

less even if you are changing the platform. Hence Java is considered as Robust in nature.

11 | P A G E Satya Kaveti

Literals

A literal represents a constant value which can be assigned to the variables

int x = 10; int – Datatype, x – variable, 10 – Literal

1.Integral Literal:

We can specify an integral literal in the following ways.

• Decimal literals: allowed digits are 0 to 9

• Binary literals (digits 0–1): which uses the number 0 followed by b or B as a prefix—for example,

0b10

• Octal literals (digits 0–7) : which uses the number 0 as a prefix—for example, 017

• Hexadecimal literals (digits 0–9 and letters A–F), which uses the number 0 followed by x or X as a

prefix—for example, 0xFF(A=10, B=11, c=12, D=13, E=14, F=15)

System.out.println(56); // 56
System.out.println(0b11); // 3 // 1*(2)1 +1*(2)0 ➔ (1*2) + (1*1) == 3
System.out.println(017); // 15 // 1*(8)1 +7*(8)0 ➔ (1*8) + (7*1) == 15
System.out.println(0x1F); // 31 // 1*(16)1 +F*(16)0 ➔ (1*16) + (15*1) == 31

By default, every integral lateral is of int datatype. An integral literal is of long type, should suffixing

with l or L

• 10 - int value.

• 10L - long value

There is no way to specify explicitly an integral literal is of type byte and short. If the integral literal is

within the range of byte then the JVM by default treats it as byte literal.

2.Floating – Point literals

By default, floating-point literals are double type. we can specify explicitly as float type by suffixing with

‘f’ or ‘F’.

float f = 10.5; // C.E Type mismatch: cannot convert from double to float
float f = 10.5f;

Floating point literals can be specified only in decimal form. i.e we can’t use octal and hex decimal

representation for floating point literals. But we can assign Octal & hex integer values to float.

Double d = 0x123.456; // C.E Invalid hex literal number
Double d = 0x123; //But we can assign Octal & hexa interger values to float

added in Java 7. You can have underscores in numbers to make them easier to read:

12 | P A G E Satya Kaveti

You can add underscores anywhere except

• at the beginning of a literal

• the end of a literal

• right before a decimal point, or right after a decimal point.

• Prior to an F or L suffix

int million1 = 1000000;
int million2 = 1_000_000;

double notAtStart = _1000.00; // DOES NOT COMPILE
double notAtEnd = 1000.00_; // DOES NOT COMPILE

double notByDecimal = 1000_.00; // DOES NOT COMPILE
double annoyingButLegal = 1_00_0.0_0; // this one compiles

The following example shows other ways you can use the underscore in numeric literals:

long creditCardNumber = 1234_5678_9012_3456L;
long socialSecurityNumber = 999_99_9999L;
float pi = 3.14_15F;
long hexBytes = 0xFF_EC_DE_5E;
long hexWords = 0xCAFE_BABE;
long maxLong = 0x7fff_ffff_ffff_ffffL;
byte nybbles = 0b0010_0101;
long bytes = 0b11010010_01101001_10010100_10010010;

Following are Invalid Locations

long x1 = 999_99_9999_L; // Before L
int x2 = 52_; // At the End Not allowed
int x3 = 5_______2; //correct : Any no.of _’s will allowed between numbers

int x4 = 0_x52; // cannot put underscores in the 0x radix prefix
int x5 = 0x_52; // cannot put underscores at the beginning of a number

int x6 = 0x5_2; correct

3. Character literal

A char literal can be represented as a single character within single quotes.

char ch = 'a';
char ch = 'ab'; C.E: unclosed character literal.

we can represent a char literal by its Unicode value. For the allowed Unicode values are 0 to 65535.

char ch = 97;
System.out.println(ch); O/P: a

char ch = 65535;
char ch = 65536; C.E : possible loss of precision found : int required :char

we can represent a char literal by using Unicode representation which is nothing but \uxxxx’(0-F)

char ch = '\u0061'
System.out.println(ch); --> O/P:a
char ch = '\ubeef'; --> O/P: ? (No character defined with this value)
char ch = '\uface'; --> O/P: ?

we can also represent a char literal by using escape character.

char ch = '\b';
char ch = '\n';
char ch = '\l';

13 | P A G E Satya Kaveti

Arrays

An array is a data structure that represents an index collection of fixed no. of homogeneous data

elements.

1.Declaring Arrays

you can type the [] before or after the name, and adding a space is optional. This means that all four of

these statements do the exact same thing:

int[] numAnimals;
int [] numAnimals2;
int numAnimals3[];
int numAnimals4 [];

The following are the valid declarations for multidimensional arrays.

int[][] a;
int a[][];
int [][]a;
int[] a[];
int[] []a;

we can specify the dimension before name of variable also. but this facility is available only for the first

variable.

int[] a[],b[]; //Correct
int[] []a,b[]; //Correct
int[] []a,[]b; //Wrong

2.Construction of Arrays

Single Dimension: Arrays are internally implemented as object. Hence by using new operator we can

construct an array.

Compulsory at the time of construction we should specify the size otherwise compile time error.

int[] a = new int[10]; _/
int[] a = new int[]; C.E : error: array dimension missing

It is legal to have an array with size 0 there is no C.E or R.E

int[] a = new int[0]; // it will create Empty Array [] (no elements inside it)
 System.out.println(a); //[I@15db9742
 System.out.println(a[0]); //Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 0

If we are specifying array size with some –ve integer, we will get R.E:NegativeArraySizeException.

int[] a = new int[-10]; // Exception in thread "main" java.lang.NegativeArraySizeException

The only allowed Data type to allow the size are byte, short, char, int. if we are using any other

datatype, we will get a C.E.

int[] a = new int[10];
int[] a = new int[10l]; --> C.E:incompatible types:possible loss of precision found: long required: int
int[] a = new int[10L]; --> C.E:incompatible types:possible loss of precision found: long required: int

14 | P A G E Satya Kaveti

Multi Dimension: In java multidimensional arrays are implemented as single dimension arrays. This

approach improves performance with respect to memory.

int[][] a = new int[3][2]; → First Row has 3 locations, each location has 2 elements, total tree
height will be 2

int[][] a = new int[4][]

a[0] = new int[1];
a[1] = new int[2];
a[2] = new int[4];
a[3] = new int[3];

declare an array for the following diagram

a[][][] = new int[2][][];
a[0] = new int[3];
a[0][1] = new int[1];
a[0][2] = new int[2];
a[0][3] = new int[3];
a[1] = new int[2][2];

3.Initialization of arrays

Once we created an array all its elements initialized with default values.

int[] a = new int[3];
System.out.println(a[0]); O/P: 0
System.out.println(a); O/P: [I@10b62c9

int[][] a = new int[3][2];
System.out.println(a); --> [I@10b62c9
System.out.println(a[0]); --> [[I@82ba41
System.out.println(a[0][0]); --> 0

int[][] a = new int[3][];
System.out.println(a); --> [I@10b62c9
System.out.println(a[0]); --> null
System.out.println(a[0][0]); --> NullPointerException

4.Declaration and Initialization Array in a single line
int[] a = {10,20,30};
String[] s = {“Chiru”,”Allu”,”Ram”,”Akil”}

15 | P A G E Satya Kaveti

5.length Vs length();

length: It is the final variable applicable only for array objects. It represents the size of the array.

int [] a = new int[5];
System.out.println(a.length()); --> C.E
System.out.println(a.length); --> 5

length():It is the final method applicable only for String Objects. Ex:

String s = "raju";
System.out.println(s.length); --> C.E
System.out.println(s.length()); --> 4

Types of Variables

Declaring Multiple Variables

int i1, i2, i3 = 0;

As you should expect, three variables were declared: i1, i2, i3. However, only one of those values was

initialized: i3. The other two remain declared but not yet initialized.

int num, String value; // DOES NOT COMPILE

This code doesn’t compile because it tries to declare multiple variables of different types in the same

statement.

1.Instance Variables

• If the value of a variable is varied from object to object. Such type of variables are called as

instance variables. For every object a separate copy of instance variables will be created.

• Instance variables will be crated at the time of object creation and will be destroyed at the time of

object destruction

• All the Instance variables Stored in “Heap area”

public class Demo
{
 int count = 20; //1 - Instance variable
}

2.Staic Variables

Static variable will get the memory only once. if any object changes the value of the static variable - it will

change its value.

16 | P A G E Satya Kaveti

• If the value of a variable is fixed for all objects, then we have to declare at class level by using

static keyword. For the static variables a single copy will be created at class level and shared by

all objects of that class.

• Static variables will be created at the time of class loading and destroyed at the time of unloading.

• All Static variables are Stored in “Method Area”

public class Test {
 int x;
 static int y = 20;
 public static void main(String arg[]) {
 Test t1 = new Test();
 t1.x = 888;
 t1.y = 999;
 Test t2 = new Test();
 System.out.println(t2.x + " : " + t2.y); //0 : 999
 }
}

3.Local variables

• If we are declaring a variable within a method or constants or block such type of variables are

called local variables.

• For the local variables JVM won’t provide any default values. Before using a local variable, we

should perform initialization explicitly otherwise compile time error.

public class Test {
 public static void main(String arg[]) {
 int i;
 System.out.println(i);
 }
}
Exception in thread "main" java.lang.Error: Unresolved compilation problem:
 The local variable i may not have been initialized

public class Test {
 public static void main(String arg[]) {
 int i;
 System.out.println("Here i not used");//No error
 }
}

• It is not recommended to perform initialization of local variables in logical blocks because there is

no guaranty of execution these blocks at runtime.

public class Test {
 public static void main(String arg[]) {
 int i;
 if(arg.length>0){
 i=10;
 }
 System.out.println(i);
 }
}
Test.java:9: error: variable i might not have been initialized
 System.out.println(i);

class Test {
 public static void main(String arg[]) {
 int i;

17 | P A G E Satya Kaveti

 if (arg.length > 0) {
 i = 10;
 } else {
 i = 20;
 }
 System.out.println(i);
 }
}
//Because if we give arguments 10 will be initialized other wise 20 will be initialized.
It is not good programming practice to perform initialization in logical blocks for local
variables because they may not execute at runtime.

• The only applicable modifier for the local variable is final. If we are using any other modifier, we

will get compile time error.

public class Test {
 public static void main(String arg[]) {
 public int a;
 protected int b;
 private int c;
 }
}
Test.java:7: error: illegal start of expression
 public int a;

main() method

JVM always calls main method to start the program. Compiler is not responsible to check whether the

class contain main() or not. Hence, if we don’t have main method, we won’t get any C.E. But at runtime

JVM raises NoSuchMethodError:main

Operators

System.out.print(9 / 3); // Outputs 3
System.out.print(9 % 3); // Outputs 0

System.out.print(10 / 3); // Outputs 3
System.out.print(10 % 3); // Outputs 1

System.out.print(11 / 3); // Outputs 3
System.out.print(11 % 3); // Outputs 2

System.out.print(12 / 3); // Outputs 4
System.out.print(12 % 3); // Outputs 0

Numeric Promotion Rules

1. If two values have different data types, Java will automatically promote one of the values to the

larger of the two data types.

2. If one of the values is integral and the other is floating-point, Java will automatically promote

the integral value to the floating-point value’s data type.

3. Smaller data types, namely byte, short, and char, are first promoted to int any time they’re

used with a Java binary arithmetic operator, even if neither of the operands is int.

4. After all promotion has occurred and the operands have the same data type, the resulting value

will have the same data type as its promoted operands.

18 | P A G E Satya Kaveti

What is the data type of x / y?

short x = 10;
short y = 3;

In this case, we must apply the third rule, namely that

• first x and y will both be promoted to int

• After promotion, operation will perform, resulting output of int type.

What is the data type of x * y / z?

All expressions will be calculated from left to right (------→)
short x = 14;
float y = 13;
double z = 30;

we evaluate the multiple and division from left-to-right. In this case, we must apply all of the rules.

• First, x will automatically be promoted to int solely because it is a short and it is being used in an

arithmetic binary operation.

• The promoted x value will automatically promoted to a float so that it can be multiplied with y.

• The result of (x * y)/z will then be automatically promoted to a double. Final value will be double

1.Increment/ Decrement

• For the final variables we can’t apply increment or decrement operators

 final int i=10;
 i++;

 (or)
i=20;

Test.java:8: error: cannot assign a value to final variable i
 i++;
 ^

• We can apply increment or decrement operators even for floating point data types also.

double d = 10.5;
d++;
System.out.println(d);// 11.5

How this following expression is evaluated?

int x = 3;
int y = ++x * 5 / x-- + --x;
 (------------→)
// All expressions will calculated from left to right (------→)

System.out.println("x is " + x);
System.out.println("y is " + y);

int y = 4 * 5 / x-- + --x; // x assigned value of 4
int y = 4 * 5 / 4 + --x; // x assigned value of 3
int y = 4 * 5 / 4 + 2; // x assigned value of 2

we evaluate the multiple and division from left-to-right, and finish with the addition. The result is then

printed: x is 2 & y is 7

19 | P A G E Satya Kaveti

Does it work?

long t = 192301398193810323; // DOES NOT COMPILE

It does not compile because Java interprets the literal as an int and notices that the value is larger than

int allows. The literal would need a postfix L to be considered a long

short x = 10;
short y = 3;
short z = x * y; // DOES NOT COMPILE

short x = 10;
short y = 3;
short z = (short)(x * y);

long x = 10;
int y = 5;
y = y * x; // DOES NOT COMPILE

In last line could be fixed with an explicit cast to (int), but there’s a better way using the compound

assignment operator:

long x = 10;
int y = 5;
y *= x; //is equals to y =(int) y*x;

The compound operator will first cast x to a long, apply the multiplication of two long values, and then

cast the result to an int.

long x = 5;
long y = (x=3);
System.out.println(x); // Outputs 3
System.out.println(y); // Also, outputs 3

Infinity and -Infinity

• In Integer Athematic (byte,int,short), if anything divide 0 will get R.E: A.E: Divide by 0.

• But In Floating point athematic, if anything divides by 0.0, we will get Infinity/ -Infinity

 System.out.println(10 / 0.0); // Infinity
 System.out.println(-10 / 0.0);// -Infinity

NaN – Not a Number

• In Integer Athematic (byte,int,short), 0 divide 0 will get R.E: A.E: Divide by 0.

• But In Floating point athematic, 0 divide by 0.0, we will get Nan (no -Nan is there)

 System.out.println(0.0 / 0.0); // NaN
 System.out.println(-0.0 / 0.0);// NaN

Equality Operators (==)

The comparisons for equality are limited to same Data Types, so you cannot mix and match types. For

example, each of the following would result in a compiler error:

boolean x = (true == 3); // DOES NOT COMPILE
boolean y = (false != "Giraffe"); // DOES NOT COMPILE
boolean z = (3 == "Kangaroo"); // DOES NOT COMPILE

Conditional Statements
int x = 1;
if(x) { // DOES NOT COMPILE
...
}

int x = 1;
if(x = 5) { // DOES NOT COMPILE
...
}

System.out.println((y > 5) ? 21 : "Zebra");
int animal = (y < 91) ? 9 : "Horse"; // DOES NOT COMPILE

20 | P A G E Satya Kaveti

Flow Control

Flow control describes the order in which all the statements will execute at run time

1.if-else :

• The argument in the if statement Should be ‘boolean’. If we provide other datatype, it will

generate Compile time Error

int x=0;
if (x) {
 System.out.println("Hello");
} else {
 System.out.println("Hi");
}
incompatible types: int cannot be converted
to boolean

boolean b=false;

if (b=true) {
 System.out.println("Hello");
} else {
 System.out.println("Hi");
}
//o/p Hello

• In the case of if-else statements else part & curly braces are optional. Without curly braces we

are allowed to take 1 statement under ‘if’, that statement never be declarative statement

otherwise compile time error.

2.Switch:

Syntax:

 int i = 0;
 switch (i) {
 case 1:
 ACTION 1;
 case 2:
 ACTION 2;
 case n:
 ACTION N;
 default:
 Def. Action
 }

• Curly bases are mandatory

• Inside a Switch both case and default are optional

21 | P A G E Satya Kaveti

int i = 10;
switch (i)
{
 // CORRECT
}

• Within switch every statement should be under some case or default i.e independent statements

are not allowed inside switch.

int i = 10;
switch(i){
 System.out.println("Hello");
}
//CE : error: case, default, or '}' expected

• All Integer Datatypes (int, short except floating point datatypes), Wrapper Classes, enums

(1.5v), Strings(1.7v) are allowed in switch statements.

• Case labels must be compiled time constants (final variables), variables are not allowed.

int i = 10; //final int i=10 - No Error
switch (i) {
case i:
 System.out.println("Hello");
 break;
}
error: constant expression required : case i:

• The ‘case’ labels must be in the range supported by switch argument.

 byte b = 100;
 switch (b) //accepts byte datatype only
 {
 case 10 :System.out.println("10");
 break;
 case 100 :System.out.println("100");
 break;
 case 1000 :System.out.println("1000");
 break;
 }
error:incompatible types: possible lossy conversion from int to byte(1000 is out of rang)

• The case labels & switch arguments can be expressions also, but case label must be constant

expression

int x=10, y=10;
byte b = 100;
switch (b + 1) {
case 10:
 System.out.println("10");
case 20:
 System.out.println("20");
case 30 + 40:
 System.out.println("30+40 = 70");
case x + y:
 System.out.println("30+40 = 70"); //ERROR
}
Test.java:16: error: constant expression required
 case x + y:

• Duplicate case labels are not allowed.

22 | P A G E Satya Kaveti

default Case: In the switch statement, we can place default case anywhere. but it is convention to take

default case always at last.

Inside switch once we got matched case, then from that statement on words all the statements will

execute from top to bottom until break or end of switch

 switch (x) {
 default:
 System.out.println("default");
 case 0:
 System.out.println("0");
 break;
 case 1:
 System.out.println("1");
 case 2:
 System.out.println("2");
 }
Here
if ‘x’ is 0 then output is 0.
if ‘x’ is 1 then output is 1,2.
if ‘x’ is 2 then output is 2.
if ‘x’ is 3 then output is default, 0.

1.While:
while(boolean){
//statements…
}

• The argument in the while Statement Should be Boolean, otherwise we will get C.E

• curly braces are optional. Without curly braces we are allowed to take 1 statement under ‘while’,

that statement never be declarative statement otherwise compile time error.

• If we wrote boolean argument as Constant value, it leads to “UnReachable Statement”

• If we wrote constant expression which is never change, it leads to infinite loop. If any final

Constant expression, then the next statement after while will be “UnReachable Statement”

while (true) {

 System.out.println("hi");

}

System.out.println("Hello");

Test.java:12: error: unreachable statement

System.out.println("Hello");

 ^

while (false) {

 System.out.println("hi");

}

System.out.println("Hello");

Test.java:4: error: unreachable tatement

System.out.println("hi");

 ^

int a = 10;

int b = 20;

while(a<b)

{

 System.out.println("Hi");

}

System.out.println("Hello");

Output : Hi Hi Hi …. Infinite loop, no error

final int a = 10;

final int b = 20;

while(a<b)

{

 System.out.println("Hi");

}

System.out.println("Hello");

Test.java:4: error: unreachable tatement

System.out.println("Hello");

23 | P A G E Satya Kaveti

2.do-while:

In the loop body has to execute at least once then we should go for do-while loop.

Syntax: Here ‘;’ is mandatory.

do
{
}while (boolean);

• Curly braces are optional; without curly braces we should take only 1 statement between do-

while, that statement never be declarative statement

do

System.out.println("hi");

while (a>b);

do

while(a>b);

//Error: at least one statement required

do;

while(a>b);

// ; is valid statement

• Like while, we will get Unreachable statement error, in following case

final int a = 10;
final int b = 20;
 do
 {
 System.out.println("Hi");
 }
while (a<b);
System.out.println("Hello");

3.for:

The most used loop

All the 3 parts of for loop are independent of each other & optional.

for(; ;); //valid

Curly braces are optional, without curly braces we should take only 1 statement, that statement never be

declarative statement.

a. Initialization Section

• This will be executed only once

• Here we can declare multiple variables of same type, but multiple variables of different types are

not allowed. Because break between the variables leads to C.E

for (int x=10, y=20 ; ;) // No Error
for (int x=10, byte y=20 ; ;) // ERROR : error: <identifier> expected

• In the initialization section we can take any valid java statement, including s.o.p also.

24 | P A G E Satya Kaveti

int i = 0;
for(System.out.println("Hi"); i<5; i++)
{
 System.out.print("Hello");
}
//O/p : Hi, Hello …(5 times)

b. Conditional Expression

• Here We can take any valid Conditional expression, but result should be boolean type.

• Conditional statement is Optional; if wont specifies anything, default should be ‘TRUE’

c. Increment/Decrement

• This statement also Optional.

• In this section we can take any valid java statement, including s.o.p also.

 Unreachable Statement

for (int i = 0; ; i++)
{
 System.out.println("Hello");
}
System.out.println("Hi");

// unreachable statement
System.out.println("Hi");

for (int i = 0;false;i++)

{

 System.out.println("Hello");

}

System.out.println("Hi");

// unreachable statement

System.out.println("Hello");

final int a = 10, b = 20;

for(int i = 0;a<b; i++)

{

 System.out.println("Hello");

}

System.out.println("Hi");

// unreachable statement

System.out.println("hi");

All Transfer statements should use

• inside loops

• not in if statements

1.break:

It can be used in the following places.

• within the loops to come out of the loop.

• inside switch statement to come out of the switch.

• If we are using break anywhere else, we will get a compile time error.

int x = 0;
if(x!=5)
break;
System.out.println("if");
C.E: error: break should not outside switch or loop

2.continue:

• we should use ‘continue’ only in the loops to skip current iteration & continue for the next

iteration.

• If we are using ‘continue’ anywhere except loops we will get compile time error saying, “continue

outside of loop”.

for(int i=0;i<10;i++)
{
if((i%2) == 0)
continue;
System.out.print(i);
}
O/P:- 13579

25 | P A G E Satya Kaveti

Fundamentals – Interview Questions

Difference between interpreter and JIT compiler?

The interpreter interprets the bytecode line by line and executes it sequentially. It results in poor

performance. JIT compiler add optimization to this process by analyzing the code in blocks and then

prepare more optimized machine code.

Difference between JRE and JVM?

JVM is the specification for runtime environment which executes the Java applications. Hotspot JVM is

such one implementation of the specification. It loads the class files and uses interpreter and JIT compiler

to convert bytecode into machine code and execute it.

Difference Between JVM & HotSpot VM

JVM: is a Specification, HotSpot : is a implementation of JVM.

HotSpot is an implementation of the JVM concept, originally developed by Sun and now owned by

Oracle.

There are other implementations of the JVM specification, like

• Open JDK

• IBM JVM

• SUN JVM

• JRockit

• Blackdown

• Kaffe

JVM implementations can differ in the way they implement JIT compiling, optimizations, garbage

collection, platforms supported, version of Java supported, etc.

How does WeakHashMap work?

WeakHashMap operates like a normal HashMap but uses WeakReference for keys. Meaning if the key

object does not hold any reference then both key/value mapping will become appropriate for garbage

collection.

How do you locate memory usage from a Java program?

You can use memory related methods from java.lang.Runtime class to get the free memory, total

memory and maximum heap memory in Java.

public static Runtime getRuntime() returns the instance of Runtime class.

public void exit(int status) terminates the current virtual machine.

public void addShutdownHook(Thread hook) registers new hook thread.

public Process exec(String command) executes given command in a separate process.

public int availableProcessors() returns no. of available processors.

public long freeMemory() returns amount of free memory in JVM.

public long totalMemory() returns amount of total memory in JVM.

http://en.wikipedia.org/wiki/HotSpot

26 | P A G E Satya Kaveti

public class TestApp {
 public static void main(String[] args) {
 Runtime r = Runtime.getRuntime();
 System.out.println(r.totalMemory()); //16252928
 System.out.println(r.freeMemory()); //15709576
 System.out.println(r.availableProcessors());//24
 r.gc();
 }
}

What is ClassLoader in Java?

once Java program is converted into .class file, it contains byte code. ClassLoader is responsible to load

that class file from file system, network or any other location

• Bootstrap ClassLoader - JRE/lib/rt.jar

• Extension ClassLoader - JRE/lib/ext or any directory denoted by java.ext.dirs

• Application ClassLoader - CLASSPATH environment variable, -classpath or -cp option, Class-Path

attribute of Manifest inside JAR file.

Java heap memory

When a Java program started Java Virtual Machine gets some memory from Operating System.

whenever we create an object using new operator or by any another means the object is allocated

memory from Heap and When object dies or garbage collected, memory goes back to Heap space.

How to increase heap size in Java

Default size of Heap space in Java is 128MB on most of 32-bit Sun's JVM. but its highly varies from JVM

to JVM. change size of heap space by using JVM options -Xms and -Xmx. Xms denotes starting size of

Heap while -Xmx denotes maximum size of Heap in Java.

Java Heap and Garbage Collection

As we know objects are created inside heap memory and Garbage Collection is a process which removes

dead objects from Java Heap space and returns memory back to Heap in Java.

 For the sake of Garbage collection Heap is divided into three main regions named as New Generation,

Old Generation, and Perm space

• New/Young Generation of Java Heap is part of Java Heap memory where a newly created object

is stored,

• Old Generation During the course of application many objects created and died but those

remain live they got moved to Old Generation by Java Garbage collector thread

• Perm space of Java Heap is where JVM stores Metadata about classes and methods, String pool

and Class level details.

• Perm Gen stands for permanent generation which holds the meta-data information about the

classes.

http://javarevisited.blogspot.sg/2012/03/how-to-create-and-execute-jar-file-in.html
http://javarevisited.blogspot.sg/2011/12/jre-jvm-jdk-jit-in-java-programming.html

27 | P A G E Satya Kaveti

• Suppose if you create a class name A, it's instance variable will be stored in heap memory and

class A along with static ClassLoader will be stored in permanent generation.

• Garbage collectors will find it difficult to clear or free the memory space stored in permanent

generation memory. Hence it is always recommended to keep the permgen memory settings to

the advisable limit.

• JAVA8 has introduced the concept called meta-space generation, hence permgen is no longer

needed when you use jdk 1.8 versions.

• Garbage collection is performed by a daemon thread called Garbage Collector(GC). This thread

calls the finalize() method before object is garbage collected.

• The Garbage collector of JVM collects only those objects that are created by new keyword. So, if

you have created any object without new, you can use finalize method to perform cleanup

processing (destroying remaining objects).

• Neither finalization nor garbage collection is guaranteed.

Data Types

How do you convert bytes to String?

you can convert bytes to the string using string constructor which accepts byte[], just make sure that

right character encoding otherwise platform's default character encoding will be used which may or may

not be same.

String str = new String(bytes, "UTF-8");

How do you convert bytes to long in Java

The byte takes 1 byte of memory and long takes 8 bytes of memory? Assignment 1 byte value to 8 bytes

is done implicitly by the JVM.

byte –> short –> int –> long –> float –> double

The left-side value can be assigned to any right-side value and is done implicitly. The reverse requires

explicit casting.

 byte b1 = 10; // 1 byte
 long l1 = b1; // one byte to 8 bytes, assigned implicitly

Is ++ operator is thread-safe in Java?

No, it's not a thread safe operator because its involve multiple instructions like reading a value,

incriminating it and storing it back into memory which can be overlapped between multiple threads.

What will this return 3*0.1 == 0.3? true or false?

Both are not equal, because floating point arithmetic has a certain precision. Check the difference (a-b) it

should be really small.

 In computer memory, floats and doubles are stored using IEEE 754 standard format.

• f1 = (0.1+0.1+0.1….11 times) = 1.0999999999999999

• f2 = 0.1*11 = 1.1

In BigDecimal class, you can specify the rounding mode and exact precision which you want to use. Using

the exact precision limit, rounding errors are mostly solved. Best part is that BigDecimal numbers are

https://en.wikipedia.org/wiki/IEEE_754
https://docs.oracle.com/javase/7/docs/api/java/math/BigDecimal.html

28 | P A G E Satya Kaveti

immutable i.e. if you create a BigDecimal BD with value “1.23”, that object will remain “1.23” and can never

be changed. You can use it’s .compareTo() method to compare to BigDecimal numbers

private static void testBdEquality()
{
 BigDecimal a = new BigDecimal("2.00");
 BigDecimal b = new BigDecimal("2.0");

 System.out.println(a.equals(b)); // false

 System.out.println(a.compareTo(b) == 0); // true
}

Which one will take more memory, an int or Integer? (answer)

An Integer object will take more memory an Integer is the an object and it store meta data overhead

about the object and int is primitive type so its takes less space.

How to convert Primitives to Wrapper & Wrapper to Primitive ??
// 1. using constructor
Integer i = new Integer(10);

// 2. using static factory method
Integer i = Integer.valueOf(10);

//3.wrapper to primitive
int val = i.intValue();

Autoboxing and Unboxing?

If a method (remember only method – not direct) requires Integer Object value, we can directly pass

primitive value without issue. Autoboxing will take care about these.

We can also do direct initializations (1.8 V)

Integer i = 10;// it will create Integer value of 10 using Autoboxing
int j = i;// ;// it will convert Integer to int using Autoboxing

Previously versions of Java (<1.4) shows

Integer i = 10;// it will create Integer value of 10 using Autoboxing
int j = i;//But we cant assign int to Integer Type mismatch: cannot convert from Integer to int

what if I make main() private/protected ?

 if you do not make main() method public, there is no compilation error. You will runtime

error because matching main() method is not present. Remember that whole syntax should match to

execute main() method.

Error: Main method not found in class Main, please define the main method as:
 public static void main(String[] args)

29 | P A G E Satya Kaveti

2.Class Declaration & Access Modifiers

Java Source File Structure

• A java Source file can contain any no of classes but at most one class can be declared as public.

• if there is any public class then compulsory the name of the source file and the name of the public

class must be matched otherwise, we will get compile time error.

• If there is no public class, then any name we can use for the source file

Java Access Modifiers

1. public – accessible everywhere

2. protected – accessible in the same package and in sub-classes

3. default – accessible only in the same package

4. private – accessible only in the same class

(Topmost) Classes and interfaces cannot be private. private members are accessible within the

same class only.

There are two levels of access control.

• Class level — Allowed modifiers are public, default only

• Method level — Allowed modifiers are public, private, protected, or package-private

(default)

Class Modifiers – Applicable only for classes

For Top – Level Class For Inner classes

public

(default)

final

abstract

strictfp

If we are using any other modifier we will get

C.E : error: modifier private not allowed

here

• public

• (default)

• protected

• private

• final

• abstract

• strictfp

• static

final:

final is the modifier applicable for classes, methods, and variables.

30 | P A G E Satya Kaveti

1.final at Class level

If a class declared as final, inheritance is not allowed.

final class P {

}
class C extends P {

}
Test.java:18: error: cannot inherit from final P
class C extends P {

2.final at Method level

If a method declared as final, we are not allowed to override that method in child classes

class P {
 public final void marry() {
 System.out.println("Bujji");
 }
}
class C extends P {
 public void marry() {
 System.out.println("Preeti");
 }
}
Test.java:21: error: marry() in C cannot override marry() in P
 public void marry() {

3.final at variable level

• If a variable declared as final, we are not allowed to change it’ s value.

• For final instance variables JVM won’t provide any default values, compulsory we should perform

initialization before completion of constructor. The following are the places to perform this

• At the time of declaration:

final int i = 0;

• Inside instance initialization block

final int i;
{
 i = 0;
}

• Inside constructor

final int i;
test()
{
 i = 0;
}

• Inside static blocks, for static final variables

static
{
 i = 0;
}

• For the local variables the only applicable modifier is final.

• Before using a local variable (whether it is final or non-final) we should perform initialization. If we

are not using local variable, then no need of perform initialization even though it is final.

• Every method presents in final class by default final, but variables are not final.

31 | P A G E Satya Kaveti

abstract:

• abstract modifier is applicable only for classes and methods, but not for variables.

• abstract method should have only declaration but not implementation. hence abstract method

declaration should end with ;(semicolon)

public abstract void m1(); //CORRECT
public abstract void m1(){} //WRONG

• If a class contain at least one abstract method, then the corresponding class should be declared

as abstract otherwise we will get C.E.

• Even though class doesn’t contain any abstract method still we can declare that class with abstract

modifier. i.e abstract class can contain zero no of abstract methods.

class Test

{

 public abstract void m1()

 {

 }

}

C.E: abstract methods can’t

have a body

class Test

{

 public abstract void m1();

}

C.E: Test is not abstract and

doesn’t override abstract

method m1 in Test()

abstract class Test

{

 public abstract void m1();

}

class SubTest extends Test

{

}

C.E: SubTest is not abstract

and doesn’t override abstract

method m1() in Test.

strictfp:

• strictfp modifier is applicable only for methods and classes but not for variables.

• If a method declared as a strictfp all floating-point calculations in that method will follows

IEEE standard so that we can get platform independent results.

• strictfp and abstract is always illegal combination for methods, but allowed for classes

• If a class declared as strictfp all concrete methods in that class will follow IEEE standard for

floating point arithmetic.

Member modifiers – Applicable for methods & variables

1. public

2. protected

3. <default>

4. private

5. final

6. static

7. native

8. synchronized

9. transient

10. volatile

32 | P A G E Satya Kaveti

1.public members

we can access public members from anywhere, but the corresponding class must be visible

2.protected members

If a member declared as protected, then we can access that member from anywhere within the current

package and only in child classes from outside package.

3.<default> members

If a member declared as a default, we can access that member only in the current package.

4.private members

If a member declared as private, we can access that member only in the current class.

5.final members

• A final class cannot be inherited. You cannot create subclasses of final classes.

• If a method declared as final, we are not allowed to override that method in child classes

• We cannot change the value of a final variable once it is initialized.

6.Static

static is the modifier is applicable for methods and variables but not classes (inner classes allowed).

• Overloading is possible for static methods.

• Inheritance concept is applicable for static methods, including main().for example, while

executing child class, if child class main() method is not present then parent class main() will

execute.
class A{
 public static void main(String[] args) {
 System.out.println("Parent class");
 }
}
public class B extends A{

}
C:\Users\kaveti_S\Downloads\JUnitHelloWorld\src\main\java>java B
A

• It seems Overriding concept is applicable for static methods, but it’s not Overriding, it is

“method hiding”

class A{
 public static void main(String[] args) {
 System.out.println("Parent class");
 }
}
public class B extends A{
 public static void main(String[] args) {
 System.out.println("Child class");
 }
}
C:\Users\kaveti_S\Downloads\JUnitHelloWorld\src\main\java>java A
Parent class

C:\Users\kaveti_S\Downloads\JUnitHelloWorld\src\main\java>java B
Child class

33 | P A G E Satya Kaveti

7.native modifier

• The methods which are implemented in non-java(like C,C++) are called “native methods”. The

main objectives of native keyword are

▪ To improve performance of the system.

▪ To communicate with already existing legacy systems.

• native is the modifier applicable only for methods, but not classes and variables.

• native method should end with ;(semicolon). because we are not responsible to provide

implementation, it is already available.so abstract and native is illegal combination of modifier

• For the native methods overloading, Inheritance and overriding concepts are applicable.

• The use of native keyword breaks the platform independent nature of java.

class Native {
 static {
 System.loadLibrary("Path of native library”) ;// Loading the native library.
 }
 public native void m1(); // Declaring a native method.
}
class client
{
 Native n = new Native();
 n.m1();//Invoking a native method.
}

8. Synchronized

• It is a keyword applicable only for methods and blocks. We can’t declare variables and classes

with synchronized keyword.

• If a method declared as synchronized at a time only one thread is allowed to execute on the given

object. Hence the main advantage of synchronized keyword is we can overcome data

inconsistency problem.

• Synchronized methods are implemented methods, so abstract combination is illegal for the

methods.

9.Transient Modifier

• Transient is the keyword applicable only for variables, but not methods and classes.

• While performing serialization if u don’t want to save the value of a particular variable, that

variable we have declared with transient keyword.

• At the time of serialization, JVM ignores the value of transient variable and saves its default value.

34 | P A G E Satya Kaveti

10.Volatile

• Volatile keyword is applicable only for variables.

• it guarantees that value of volatile variable will always be read from main memory and not from

Thread's local cache.

• So, we can use volatile to achieve synchronization because it’s guaranteed that all reader thread

will see updated value of volatile variable once write operation completed.

• volatile provides the guarantee, changes made in one thread is visible to others.

What is the difference between the volatile and atomic variable in Java?

For example count++ operation will not become atomic just by declaring count variable as volatile. On

the other hand AtomicInteger class provides atomic method to perform such compound operation

atomically e.g. getAndIncrement() is atomic replacement of increment operator. It can be used to

atomically increment current value by one. Similarly, you have atomic version for other data type and

reference variable as well.

Modifier Variables Method Top level class Inner class Blocks constructor

public
<default>
protected
private
abstract
final
strictfp
synchronized
native
transient
volatile

Nested Classes

Inner Class A class created within class and outside method.

Static Nested Class A static class created within class and outside method.

Local Inner Class A class created within method.

Anonymous Inner

Class

A class created for implementing interface or extending class. Its name is

decided by the java compiler.

Nested Interface An interface created within class or interface.

http://www.smlcodes.com/java/vi-java-inner-classes/
http://www.smlcodes.com/java/vi-java-inner-classes/
http://www.smlcodes.com/java/vi-java-inner-classes/
http://www.smlcodes.com/java/vi-java-inner-classes/
http://www.smlcodes.com/java/vi-java-inner-classes/
http://www.smlcodes.com/java/vi-java-inner-classes/

35 | P A G E Satya Kaveti

1. Inner Classes
If a non-static class is created in the class & outside the method is known as “Member Inner class”.

Because it is just a member of that class

public class Outer{
 int a =100;
 String msg="Iam Outer Class";

 class Inner{
 int b=200;
 String inmsg="Inner class variable";
 public void show(){
 System.out.println(b+"\n"+inmsg+"\n"+msg);
 }
 }

 public static void main(String []args){
 Outer o = new Outer();
 Outer.Inner i = o.new Inner();
 i.show();
 }
}

1. instance of inner class is created inside the instance of outer class.

The java compiler creates two class files in case of inner class. The class file name of inner class is

"Outer$Inner”. For Outer.java it will create 2 .class files

• Outer$Inner.class, Outer.class

• For creating normal class object, we do

 OuterClass ob = new OuterClass();

• For creating inner class object,

o We need to create Outer class Object.

o we need to add OuterClass class & Outer Class Object before Inner class

OuterClass.InnerClass i = o.new InnerClass();

import java.io.PrintStream;

class Outer.Inner
{
 int b;
 String inmsg;

 Outer.Inner() {
 this.b = 200;
 this.inmsg = "Inner class variable";
 }

 public void show() {
 System.out.println("" + this.b + "\n" + this.inmsg + "\n" + Outer.this.msg);
 }
}

36 | P A G E Satya Kaveti

2. Static Nested Classes (Nested Classes)

If a Static class is created inside Outer class is known as Static Nested class

• Non-Static Data Members/Methods : it Cannot assess directly

• Static Data Members : it Can access

public class StaticNestedDemo {
 int a = 100;
 static int b = 200;
 static class Inner {
 static void get() {
 System.out.println("B " + b);
 // a -Cannot make a static reference to the non-static field a
 }
 }
 public static void main(String[] args) {
 StaticNestedDemo.Inner ob = new StaticNestedDemo.Inner();
 ob.get();
 // ditectly
 StaticNestedDemo.Inner.get();
 }
}
B 200
B 200

3. Local Inner Classes

If a class is created inside the method is known as “Local Inner Class”

• Local class variable should not private, public, and protected

• Local inner class cannot be invoked from outside of the method.

• Local Inner class only access final variables from outside class(until 1.7 , from 1.8 they

can access non-final also)

public class Local {
 public void get() {
 System.out.println("Get Method");
 int a = 100;
 class Inner {
 public void show() {
 System.out.println(a);
 }
 }
 Inner ob = new Inner();
 ob.show();
 }

 public static void main(String ar[]) {
 Local ob = new Local();
 ob.get();
 }
}
Get Method
100

37 | P A G E Satya Kaveti

4. Anonymous Inner Classes

If a class doesn’t have any Name, such type of classes are noted as Anonymous Inner classes.in real time

two types of Anonymous inner classes we may implement

• Class: If method of one class returning instance, we can directly implement and will get the object

• Interface: Same way, if a method of interface return object, we directly implement to get the

object

interface A {
 public void aShow();
}

abstract class B {
 abstract void bShow();
}

public class AnnonymousDemo {
 A a = new A() {
 @Override
 public void aShow() {
 System.out.println("A show()");
 }
 };

 B b = new B() {
 @Override
 void bShow() {
 System.out.println("B show()");
 }
 };

 public static void main(String[] args) {
 AnnonymousDemo demo = new AnnonymousDemo();
 demo.a.aShow();
 demo.b.bShow();
 }
}

A show()
B show()

1.If we use anonymous inner class in our main class, internally it creates the new inner class with name

MainClass$X(x is a number) which is

• extends in case of Class

• implements in case of Interface

In above class the compile generates Anonymous inner class as below

class AnnonymousDemo$1 implements A
{
 AnnonymousDemo$1(AnnonymousDemo paramAnnonymousDemo) {}
 public void aShow()
 {
 System.out.println("A show()");
 }
}

38 | P A G E Satya Kaveti

class AnnonymousDemo$2 extends B
{
 AnnonymousDemo$2(AnnonymousDemo paramAnnonymousDemo) {}
 void bShow()
 {
 System.out.println("B show()");
 }
}

2.If we want to create the Object for inner class we must use outer class object. because inner classes are

generated inside of outer class

AnnonymousDemo demo = new AnnonymousDemo();
 demo.a.aShow();
 demo.b.bShow();

Nested Interface

We can declare an interface in another interface or class. Such an interface is termed as a nested

interface.

The following are the rules governing a nested interface.

• A nested interface declared within an interface must be public.

• A nested interface declared within a class can have any access modifier.

• A nested interface is by default static.

interface Showable {
 void show();
 interface Message {
 void msg();
 }
}

class TestNestedInterface1 implements Showable.Message {
 public void msg() {
 System.out.println("Hello nested interface");
 }

 public static void main(String args[]) {
 Showable.Message message = new TestNestedInterface1();// upcasting here
 message.msg();
 }
}

class Animal {
 interface Activity {
 void move();
 }
}
class Dog implements Animal.Activity {
 public void move() {
 System.out.println("Dogs can walk and run");
 }
}
public class Tester {
 public static void main(String args[]) {
 Dog dog = new Dog();
 dog.move();
 }
}

http://www.smlcodes.com/java/vi-java-inner-classes/

39 | P A G E Satya Kaveti

3. Interfaces
• We can declare interface by interface keyword & implementing using implements keyword. The

allowed modifiers for interface are

public

abstract

strictfp

<default>

interface sum1{
}

abstract interface sum2{
}

abstract strictfp interface sum3{
}

• Whenever a class implementing an interface, we should provide the implementation for all the

interface methods. Otherwise, the class must be declared that class as abstract. Violation leads to

compile time error.

• By default, all interface methods are public abstract & variables are public static final.

• Whenever we are implementing an interface method, compulsory we should declare that method

as public, otherwise we will get compile time error.

interface sample {
 void m1();
}

class Test implements sample {
 void m1() {
 }
}
Test.java:13: error: m1() in Test cannot implement m1() in sample
 void m1() {
 ^
 attempting to assign weaker access privileges; was public 1 error

• Every interface variable is by default public static final. Hence the following declarations are

equal inside interface.

int i = 10;
public int i = 10;
public static int i = 10;
public static final int i = 10;

• For interface variables we should perform initialization at the time of Declaration only. Because

they are final by default. For final variables we must provide value at the time of initialization.

interface inter
{
int i; C.E = expected.
}

40 | P A G E Satya Kaveti

• interface variables are by default available in the implemented classes. From the implementation

classes we are allowed to access but not allowed to change their values i.e reassignment is not

possible because these are final.

interface inter {
 int i = 10;
}

class test implements inter {
 public static void main(String arg[]) {
 i=20;
 System.out.println(inter.i);
 }
}

B.java:7: error: cannot assign a value to final variable i
 i=20;

• we can re-declare interface variable in implemented class with same variable name, there is no

Error, because both are created two different memory areas

interface inter {
 int i = 100;
}

class Demo implements inter {
 static int i = 200;

 public static void main(String arg[]) {
 System.out.println(i);
 System.out.println(inter.i);
 }
}

E:\Users\Kaveti_S\Desktop\Codes\NotepadExamples>java Demo
200
100

Naming conflicts in interfaces

• If two interfaces contain a method with same signature and same return type in the

implementation class, only one method implementation is enough

interface Left {
 void m1();
}
interface Right {
 void m1();
}

class Test implements Left, Right {
 public void m1() {
 System.out.println("method");
 }

 public static void main(String[] args) {
 Left l = new Test();
 l.m1();

 Right r = new Test();
 r.m1();
 }
}

method
method

41 | P A G E Satya Kaveti

• If two interfaces contain a method with same signature but different return type, then we can’t

implement those two interfaces simultaneously.

interface Left {
 void m1();
}
interface Right {
 int m1();
}
class Test implements Left, Right {
 public void m1() {
 System.out.println("void");
 }
 public int m1() {
 System.out.println("void");
 }
}
Test.java:10: error: m1() in Test cannot implement m1() in Right
 ^ return type void is not compatible with int

• If a class contains methods with same signature but different return type, it will throw C.E:
Duplicate method m1() in type Outer

Marker Interface

• an interface which doesn’t contain any methods, treated as ‘Marker’ interface

• By implementing marker interface, our object will get some special ability(features), such type of

interfaces are called “marker” or “taginterface”.

• Ex: Serializable, Cloneable interfaces are marked for some ability.

Interface Enhancements

1. default methods – Java 8

2. static methods – Java 8

3. private methods – Java 9 (Static & Non-Static also)

interface Default Methods: Java 8

• Java 8 allows you to add non-abstract methods in interfaces. These methods must be declared

default keyword.

• Default methods enable you to add new functionality to the interfaces of your libraries and

ensure binary compatibility with code written for older versions of those interfaces.

interface Vehicle {
 default void move() {
 System.out.println("Def. move");
 }
}
class Car implements Vehicle {
}
class Bus implements Vehicle {
 public void move() {
 System.out.println("Bus. Move");
 }
}
public class Test {
 public static void main(String[] args) {
 new Car().move();
 new Bus().move();
 }
}

Def. move
Bus. Move

42 | P A G E Satya Kaveti

• Vehicle interface defines a method move() and provided a default implementation as well. If any

class implements this interface then it need not to implement its own version of move() method.

It can directly call instance.move().

• If class willingly wants to customize the behavior of move() method then it can provide its own

custom implementation and override the method by removing ‘default’ keyword

interface Static Methods: Java 8

Java interface static method is similar to default method except that we can’t override them in the

implementation classes. This feature helps us in avoiding inconsistent results in case of poor

implementation in implementation classes

interface Vehicle {
 default void move() {
 System.out.println("Def. move");
 }
 static void year(){
 System.out.println("Def. 1998");
 }
}
class Test implements Vehicle{
 @Override
 public void move() {
 System.out.println("Bus. Move");
 }
 static void year(){
 System.out.println("2018");
 }
 public static void main(String[] args) {
 Vehicle.year();
 year();
 }
}
Def. 1998
2018

Note that year() is a simple class method, it’s not overriding the interface method. For example, if we will

add @Override annotation to the year() method, it will result in compiler error.

Interface Private Methods – Java 9

private methods will improve code re-usability inside interfaces. For example, if two default methods

needed to share code, a private interface method would allow them to do so, but without exposing that

private method to its implementing classes.

Using private methods in interfaces have four rules:

• Private interface method cannot be abstract.

• Private method can be used only inside interface.

• Private static method can be used inside other static and non-static interface methods.

• Private non-static methods cannot be used inside private static methods.

public interface Calculator
{
 default int addEvenNumbers(int... nums) {
 return add(n -> n % 2 == 0, nums);
 }

 default int addOddNumbers(int... nums) {
 return add(n -> n % 2 != 0, nums);
 }

https://www.journaldev.com/817/java-override-annotation

43 | P A G E Satya Kaveti

 private int add(IntPredicate predicate, int... nums) {
 return IntStream.of(nums)
 .filter(predicate)
 .sum();
 }
}

Functional Interfaces

Functional interfaces are also called Single Abstract Method interfaces (SAM Interfaces). As name suggest,

they permit exactly one abstract method inside them.

Java 8 introduces an annotation i.e. @FunctionalInterface which can be used for compiler level errors,

when the interface you have annotated violates the contracts of Functional Interface.

@FunctionalInterface
public interface Test {
 public void firstWork();
}

Please note that a functional interface is valid even if the @FunctionalInterface annotation would be

omitted. It is only for informing the compiler to enforce single abstract method inside interface.

44 | P A G E Satya Kaveti

4.OOPS

1.Data Hiding

Hiding of data, so that outside person can’t access our data. The main advantage of data hiding is we can

achieve security. Using ‘private’ modifier we can achieve data hiding.

class datademo
{
private double amount;
………
}

2.Abstraction

Hiding implementation details is nothing but abstraction. The main advantages of abstraction are we can

achieve security as we are not highlighting internal implementation.

using interfaces & abstract classes we can achieve data Abstraction.

3. Encapsulation

Encapsulation means the ‘encapsulating’ or ‘wrapping up’ of data. This is actually a mechanism that binds

data together.

When encapsulation is implemented, only the variables inside the class can access it. No class outside the

current class can access the variables inside it. This is similar to the fact that no one except you can access

the clothes inside your travel bag. You can also declare a method as abstract and add a private access

specifier to limit its access outside the class. This is an example of Encapsulation and Abstraction.

Wrapping data and methods within classes in combination with implementation hiding (through access

control) is often called encapsulation.

If a class follows Data Hiding(private) and Abstraction (Interfaces) such type of class is said to be

‘Encapsulated’ class. Encapsulation = Data Hiding + Abstraction

Abstraction VS Encapsulation

• Abstraction is more about ‘What‘ a class can do. [Idea]

• Encapsulation is more about ‘How‘ to achieve that functionality. [Implementation]

class Account {
 private int balance;

 public void setBalance(int balance) {
 this.balance = balance; // validating the user & his permissions.
 }

 public int getBalance() {
 return balance; // validating the user and his permissions.
 }
}

45 | P A G E Satya Kaveti

Tightly Encapsulated Class

A class is said to be tightly encapsulated iff all the data members declared as private.

• Only data members should private. getters, setters, other methods are not required to be

private.

• if the parent class is not tightly encapsulated then no child class is tightly encapsulated.

class x {
 int i = 0;
}
class y extends x {
 //int i -> hides as public
 private int j = 20;
}
class z extends y {
 //int i -> hides as public
 private int k = 30;
}

4. Inheritance

IS-A Relationship

• Also known as ‘Inheritance’.

• By using extends keyword we can implement inheritance.

• The main advantage is reusability.

class P {
 public void m1() {
 System.out.println("Parent method");
 }
}

class C extends P {
 public void m1() {
 System.out.println("Child method");
 }
}

public class Test {
 public static void main(String[] args) {
 C p = new C();
 p.m1();
 }
}
Child method

• Every java class is a direct Child class of ‘Object’ class

Object
 |
Class A

• If our java class extends any other class, then it is indirect child class of Object

 Object
 |
 Class B
 |
Class A extends B

• Cyclic inheritance is not allowed in java

class A extends B{
}
class B extends A{
}

46 | P A G E Satya Kaveti

Test.java:3: error: cyclic inheritance involving A
class A extends B{
^ 1 error

Has-A Relationship

Has-a relationship is one in which an object of one class is created as a data member in another class.

class Student
{
 int sno;
 String name;
 Address address;
}

Association
Association in Java is one of the building blocks and the most basic concept of object-oriented

programming. Association is a connection or relationship between two separate classes.

It shows how objects of two classes are associated with each other. The Association defines the

multiplicity between objects. We can describe the Association as a has-a relationship between the classes.

Has-a relationship is one in which an object of one class is created as a data member in another class.

class Student
{
 int sno;
 String name;
 Address address;
}

Association is a kind of relationship between classes whose objects have an independent lifecycle and

there is no ownership between the objects. It can be one-to-one, one-to-many, many-to-one, many-to-

many.

1. One-to-one

The best example of a one-to-one association is that one person or one individual can have only one

passport. This is a one-to-one relationship between the person and the passport.

2. One-to-many

Suppose there is a Doctor and his patients. So, one doctor is associated with many patients. So this is an

example of a one-to-many Association between a doctor and patients.

3. Many-to-one

For example, there can be many books in one library, each book is associated with that library, and it can’t

be a part of another library. So, many books are related to one library.This is an example of a many-to-

one Association between books and a library.

4. Many-to-many

If we talk about a teacher and student, there can be many students associated with one teacher, and also,

the teacher can be related to many students. So, the relationship between a teacher and student can be

many-to-many.

https://howtodoinjava.com/oops/association-aggregation-composition/

47 | P A G E Satya Kaveti

There are two special forms of Association in Java. They are:

1. Aggregation

2. Composition

Aggregation
Aggregation in Java is a special kind of association. It represents the Has-A relationship between classes.

Java Aggregation allows only one-to-one relationships.

If an object is destroyed, it will not affect the other object, i.e., both objects can work independently.

Let’s take an example. There is an Employee in a company who belongs to a particular Department. If

the Employee object gets destroyed still the Department can work independently

Composition
The composition is another form of aggregation. In this type of association, the entities are completely

dependent on each other. One entity cannot exist without the other. Composition in Java represents a

one-to-many relationship.

Suppose there is a House and inside the house, there are many rooms. A single house can have multiple

rooms, but a single room cannot have multiple houses. And, if we delete the house, the rooms will

automatically be deleted.

Uses-A Relationship

Uses-a relationship is one in which an Object of one class is created inside a method of another class.

class Student {
 int sno;
 String name;

 public static void main(String[] args) {
 Address address = new Address();
 }
}

Overloading

Two methods are said to be overloaded, iff the method names are same, but arguments are different.

class Test {
 public void m1() {
 System.out.println("no-args");
 }
 public void m1(int i) {
 System.out.println("int-args");
 }
 public void m1(double d) {
 System.out.println("double-args");
 }
 public static void main(String[] args) {
 Test t = new Test();
 t.m1();
 t.m1(10);
 t.m1(10.5f); // Pramoted to next level
 }
}
no-args
int-args
double-args

48 | P A G E Satya Kaveti

The overloading method resolution is the responsibility of compiler based on reference type and method

arguments. Hence overloading is considered as compile-time polymorphism

• In the case of overloading if there is no method with the required argument then the compiler

won’t raise immediately compile time error. First it will promote arguments datatype to next level

and checks is there any matched method with promoted arguments, if there is no such method

compiler will promote the argument to the next level and checks for the matched method. After

all possible promotions still the compiler unable to find the matched method then it raises

compile time error.

• In the case of overloading the more specific version will get the chance first. If Specific version is

not available, Child version will get more priority than Parent version

class Test {
 public void m1(String s) {
 System.out.println("String Version");
 }

 public void m1(Object o) {
 System.out.println("Object Version");
 }
 public static void main(String arg[]) {
 Test t = new Test();
 t.m1("raju"); // String Version
 t.m1(new Object());// Object Version
 t.m1(null); // String(child) → Object(parent)
 }
}
String Version
Object Version
String Version

• In case of same level of child classes are available, it will throws Ambiguity error

class Test {
 public void m1(String s) {
 System.out.println("String Version");
 }
 public void m1(StringBuffer o) {
 System.out.println("StringBuffer Version");
 }
 public static void main(String arg[]) {
 Test t = new Test();
 t.m1("raju"); // String Version
 t.m1(null); // Ambiguity Version
 }
}
Test.java:13: error: reference to m1 is ambiguous
 t.m1(null); // Ambiguity Version
 both method m1(String) in Test and method m1(StringBuffer) in Test match: 1 error

• var-arg method will always get least priority i.e if no other method matched then only var-arg

method will get chance for execution

Overriding

If the child class is not satisfied with the parent class implementation, then the child can overwrite that

parent class method with its own specific implementation. this concept is nothing but “overriding”.

49 | P A G E Satya Kaveti

Rules

#1: Only inherited methods can be overridden.

#2: final and static methods cannot be overridden.

private, static and final method cannot be overridden in Java. By the way, you can hide private and

static method but trying to override final method will result in compile time error "Cannot override the

final method from a class"

class P {

public final void m1(){

System.out.println("m1");

 }

}

class Test extends P {

// final void m1 - hidden

public void m1() {

 }

}

class P {

 public static void m1(){

 System.out.println("m1");

 }

}

class Test extends P {

 public void m1(){

 }

}

class P {

 private void show(){

 System.out.println("show");

 }

}

class Test extends P {

public static void main(String a[]){

 Test ob = new Test();

 Ob.show();

 }

}

Test.java:8: error: m1() in

Test cannot override m1() in

P

 public void m1(){

overridden method is final

1 error

Test.java:8: error: m1() in Test

cannot override m1() in P

 public void m1(){

 ^

overridden method is static

1 error

Demo.java:14: error: cannot find

symbol

 ob.show();

 symbol: method show()

 show() method not visble to Test

class

#3: The overriding method must have same return type (or Child type/subtype/Covariant).

class P{
 public Object m1(){
 return null;
 }
}
class Test extends P {
 public String m1(){
 return null;
 }
}

#4: The overriding method must not have lesser access modifier.

class P{
 public String m1(){
 return null;
 }
}
class Test extends P{
 protected String m1(){
 return null;
 }
}
Test.java:8: error: m1() in Test cannot override m1() in P
 protected String m1(){
 ^
 attempting to assign weaker access privileges; was public
1 error

#5: The overriding method must not throw new or broader CheckedExceptions. It can have allowed

to throw Child Exceptions or remove throws keyword from method signature.

http://java67.blogspot.sg/2012/08/can-we-override-private-method-in-java.html
http://java67.blogspot.sg/2012/08/can-we-override-static-method-in-java.html
http://javarevisited.blogspot.sg/2011/12/final-variable-method-class-java.html
http://javarevisited.blogspot.sg/2011/12/final-variable-method-class-java.html

50 | P A G E Satya Kaveti

class P{
 public String m1() throws IOException{
 return null;
 }
}
class Test extends P{
 public String m1() throws Exception{
 return null;
 }
}
Test.java:10: error: m1() in Test cannot override m1() in P
 public String m1() throws Exception{
 ^
 overridden method does not throw Exception : 1 error

• final method can’t be overridden in child classes. private methods are not visible in the child

classes. Hence, they won’t participate in overriding. Based on our requirement we can take exactly

same declaration in child class, But It is not overriding.

• A static method can’t be overridden as non-static, and a non-static method can’t be overridden

as static method

• If both parent and child class methods are static, then there is no compile time error or run time

error it seems that overriding is happened, but it is not overriding this concept is called “method

hiding”. All the rules of method hiding are exactly similar to overriding, except both methods

declared as static.

• In the case of method hiding method resolution will take care by compiler based on reference

type (But not runtime object).

• Overriding concept is not applicable for variables. And it is applicable only for methods. Variable

resolution always takes care by compiler based on reference type

class P {
 int i = 888;
}
class C extends P {
 int i = 999;
}
class Test {
 public static void main(String arg[]) {
 // Case1:
 P p = new P();
 System.out.println(p.i); // 888

 // Case2:
 C c = new C();
 System.out.println(c.i); // 999

 // Case3:
 P p1 = new C();
 System.out.println(p1.i); // 888
 }
}

51 | P A G E Satya Kaveti

4. Static & Instance Control flows

Static Blocks

If we want to perform some activity at the time of class loading, Then we should define that activity at

static blocks because these (static blocks) will execute at the time of class loading only.

If we want to load native libraries at the time of class loading, then we can place that activity inside “static

block”.

class Native
{

static
{
 System.loadLibrary("native Library path");
}

}

Static Control Flow

1. Identifying the static members from parent to child (top to bottom).

2. Execution of static variable assignments & static blocks from parent to child.

3. Execution of child class main method

During these phases there is one such state called RIWO(Read Indirectly Write Only) for a static variable.

Read Indirectly Write Only(Read should Indirect & Write is allowed anyway)

If a variable is RIWO state, we can’t perform Read operation Directly, if we try to do that it will throw

Compile time Error: illegal forward reference

public class Test{

 static int x = 10;

 static {

 System.out.println(x);

 }

}

public class Test{

 static {

 System.out.println(x);

 }

 static int x = 10;

}

Output : 10 Test.java:5: error: illegal forward reference

 System.out.println(x);

To resolve this, instead of direct read, we should go for indirect read. Line use method in-between.

public class Test{
 static {
 m1();
 }
 static void m1(){
 System.out.println(x);
 }
 static int x = 10;
}
Output : 0

52 | P A G E Satya Kaveti

class's static default initialization normally happens immediately before the first time one of the following

events occur:

• an instance of the class is created,

• a static method of the class is invoked, (this is in above case)

• a static field of the class is assigned,

• a non-constant static field is used

class Base {
 static int x = 10;

 static {
 m1(); // a static method of the class is invoked so, y=[0]
 System.out.println("Base Class : static block");
 }

public static void main(String[] args) {
 m1();
 System.out.println("Base Class : Main method");
 }

public static void m1() {

 {
 System.out.println("y ==>" + y);
 }
 }
 static int y = 20;
}

class Derived extends Base {
 static int i = 100;

 static {
 m2();
 System.out.println("Derived Class : Static block");
 }

 public static void main(String[] args) {
 m2();
 System.out.println("Derived Class : Main method");
 }

 public static void m2() {
 System.out.println("j ==> " + j);
 }

 static {
 System.out.println("Derived Class : Static block at the end");
 }
 static int j = 200;
}

C:\Users\src\main\java>java Base
y ==>0
Base Class : static block
y ==>20
Base Class : Main method

C:\Users\src\main\java>java Derived
y ==>0
Base Class : static block
j ==> 0
Derived Class : Static block
Derived Class : Static block at the end
j ==> 200
Derived Class : Main method

53 | P A G E Satya Kaveti

Instance Control flow

static control flow is only one-time activity, and it will be performed at the time of class loading but

instance control flow is not one-time activity for every object creation it will be executed.

Whenever we are trying to create child class object, the following events will be performed automatically.

(Remember, here we are creating Child class Object in the main)

1.Identification of instance members from parent to child (top to bottom).

2.Parent Class

• Execution of instance variables assignments and instance blocks only in parent class.

• Execution of parent class constructor.

3.Child Class

• Execution of instance variables assignments and instance blocks only in child class.

• Execution of child class constructor.

All static initializers are executed in textual order in which they appear and execute before any instance

initializers.

class Parent {
 int i = 10;
 {
 System.out.println("First parent Instance block");
 }
 Parent() {
 m1();
 System.out.println("Parent Constructor");
 }
 public static void main(String[] args) {
 Parent p = new Parent();
 System.out.println("parent main");
 }
 public void m1() {
 System.out.println(j);
 }
 static {
 System.out.println("parent static block");
 }
 int j = 20;
}

class Child extends Parent {
 int x = 20;
 {
 m2();
 System.out.println("First child Instance block");
 }
 Child() {
 System.out.println("Child Constructor");
 }
 public static void main(String[] args) {
 Child c = new Child();
 System.out.println(" Child main");
 }
 public void m2() {
 System.out.println(y);
 }
 {
 System.out.println("Second child instance block");
 }
 int y = 200;
}
C:\Users\kaveti_S\Downloads\JUnitHelloWorld\src\main\java>java Parent

54 | P A G E Satya Kaveti

parent static block
First parent Instance block
20
Parent Constructor
parent main

C:\Users\kaveti_S\Downloads\JUnitHelloWorld\src\main\java>java Child
parent static block
First parent Instance block
20
Parent Constructor
0
First child Instance block
Second child instance block
Child Constructor
Child main

If child class object is not created, then Output is

E:\Users\Kaveti_S\Desktop\Codes\NotepadExamples>java Child
parent static block
Child main

Combining Both

First Static – Only once

1.Identification of static & instance members from parent to child (top to bottom).

2. Execution of static variable assignments & static blocks from parent to child.

Second - Instance

3.Parent Class

• Execution of instance variables assignments and instance blocks only in parent class.

• Execution of parent class constructor.

4.Child Class

• Execution of instance variables assignments and instance blocks only in child class.

• Execution of child class constructor.

 5. Constructor

At the time of Object Creation some peace of code will execute automatically to perform initialization.

that peace of code is nothing but “Constructor”. Hence the main Objective of constructor is to perform

initialization.

Rules for writing Constructor

• The name of the constructor and name of the class must be same.

• The only allowed modifiers for the constructors are public, private, protected, <default>. If we

are using any other modifier, we will get C.E(Compiler Error).

class Test
{
static Test(){

}
}
C.E:- modifier static not allowed here.

55 | P A G E Satya Kaveti

• return type is not allowed for the constructors, even void also. If we are declaring return type,

then the compiler treats it as a method and hence there is no C.E and R.E(RuntimeError).

class Test
{
void Test(){
System.out.println("Hai");
}
public static void main(String arg[]){
Test t = new Test();
}
}

• If we are not writing any constructor, then the compiler always generates default constructor.

• If we are writing at least one constructor, then the compiler won’t generate any constructor.

Hence every class contains either programmer written constructor or compiler generated default

constructor but not both simultaneously.

Programmer Code Compiler Code
class Test{

}

class Test {

 Test() {

 super();

 }

}

public class Test {

}

public class Test {

 public Test() {

 super();

 }

}

class Test {

 private Test() {

 }

}

class Test {

 private Test() {

 super();

 }

}

class Test {

 void Test() {

 }

}

class Test {

 void Test() {

 }

 Test() {

 super();

 }

}

class Test {

 Test() {

 this(10);

 }

 Test(int i) {

 }

}

class Test {

 Test() {

 this(10);

 }

 Test(int i) {

 super();

 }

}

class Test {

 Test(int i) {

 }

}

class Test {

 Test(int i) {

 super();

 }

}

• super() & this() in constructor

▪ we should use as first statement in constructor.

▪ We can use either super or this but not both simultaneously.

▪ we can invoke a constructor directly from another constructor only

56 | P A G E Satya Kaveti

• Inheritance concept is not applicable for constructor, so overriding is also not applicable

• Recursive Constructor invocation leads to Compile-time Exception.

class Test {
 Test() {
 this(10);
 }

 Test(int i) {
 this();
 }
}
Test.java:6: error: recursive constructor invocation
 Test(int i) {
 ^
1 error

• whenever we are writing parameterized constructor, it is recommended to provide no-argument

constructor as well. If parent class contains parameterized constructor, then while writing child

class constructor we should take a bit care

class p {
 p(int i) {
 }
}

class c extends p
{
 //no-arg not defiend
}

class p {
 p(int i) {
 }
}

class c extends p
{ //Generated Code
 c(){
 super();
 }
}

Test.java:6: error: constructor p in class p cannot be applied to given types;
class c extends p
^

• If the parent class constructor throws checked exception, Compulsory the child class constructor

should throw the same checked exception or its parent otherwise we will get compile time error

class p {
 p() throws IOException {
 }
}

class c extends p {
 c() {
 super();
 }
}
Test.java:10: error: unreported exception IOException; must be caught or declared to be thrown
 super();
 ^

• If the parent class constructor throws unchecked exception, then child class constructor not

required to throw that exception.

57 | P A G E Satya Kaveti

5.Exception Handling
The unexpected unwanted event which disturbs entire flow of the program is known as “Exception”

• If we are not handling exception, the program may terminate abnormally without releasing

allocated resources.

• Exception handling means it is not repairing an exception, just providing alternative way to

continue the program execution normally.

If we divide any number by zero, there occurs an ArithmeticException.

int a=50/0; //ArithmeticException

If we have null value in any variable, performing any operation occurs a NullPointerException.

String s=null;
System.out.println(s.length()); //NullPointerException

The wrong formatting of any value may occur NumberFormatException.

String s="abc";
int i=Integer.parseInt(s); //NumberFormatException

If you are inserting any value in the wrong index, it would result ArrayIndexOutOfBoundsException

int a[]=new int[5];
a[10]=50; //ArrayIndexOutOfBoundsException

Default Exception Handling

• Whenever an exception raised, the method in which it is raised is responsible for the preparation

of exception object by including the following information

Name of Exception: Description.
Location of Exception(Line Numebr)

• After preparation of Exception Object, the method handovers the object to the JVM, JVM will

check for Exception handling code in that method.

• If the method doesn’t contain any exception handling code, then JVM terminates that method

abnormally and removes corresponding entry from the stack.

• JVM will check for exception handling code in the caller and if the caller method also doesn’t

contain exception handling code then JVM terminates that caller method abnormally and

removes corresponding entry from the stack.

• This process will be continued until main method, if the main method also doesn’t contain any

exception handling code then JVM terminates main method abnormally.

• Just before terminating the program JVM handovers the responsibilities of exception handling to

default exception handler. Default exception handler prints the error in the following format.

Name of Exception: Description
stackTrace

58 | P A G E Satya Kaveti

Exception Hierarchy

Throwable is the parent of entire java exception hierarchy. It has 2 child classes

1) Exception.

2) Error.

1.Exception

These are recoverable. Most of the cases exceptions are raised due to bad code.

• Checked Exceptions: They Cheeked by Compiler, they will check that the given resource is

existed or not, they are usually occur interacting with outside resources/ network resources e.g.,

database problems, network connection errors, missing files etc. Java forces you to handle

these error scenarios in some manner in your application code

• Unchecked Exceptions: occurrences of which are not checked by the compiler like coding,

initialization, Primitive data errors. They usually result of bad code in your system.

RuntimeException and its child classes, Error and it’s child classes are considered as unchecked

exceptions and all the remaining considered as checked.

2.Error

Errors are non-recoverable. Most of the cases errors are due to lack of system resources but not due to

our programs.

JVM +Memory+ OS level issues. OutOfMemory, StatckOverFlow

Partially Checked Vs Fully Checked

• Fully Checked: A checked exception is said to be fully checked iff all its child classes also

checked. Ex: - IOException.

• Partially Checked: A checked exception is said to be partially checked if some of it’s child classes

are not checked. Ex: - Exception, Throwable.

59 | P A G E Satya Kaveti

1.Using an object of java.lang.Exception

try

{
int x=Integer.parseInt ("10x");
}
catch (Exception e)
{
 System.out.println (e); // java.lang.NumberFormatException : for input string 10x
} name of the exception || nature of the message

2.Using printStackTrace method

e.printStackTrace (); // java.lang.ArithmeticException : / by zero : at line no: 4
 name of the exception || nature of the message || line number

3.Using getMessage method:

System.out.println (e.getMessage ()); // / by zero

 nature of the message

Using try, catch, finally

• We have to place the risky code inside the try block and the corresponding exception handling

code inside catch block.

Without try-catch With try-catch
class Test {

 public static void main(String arg[]) {

 System.out.println("Statement 1");

 System.out.println(10 / 0);

 System.out.println("Statement 2");

 }

 }

class Test {

 public static void main(String arg[])

 {

 System.out.println("Statement 1");

 try {

 System.out.println(10 / 0);

 }

 catch (ArithmeticException e)

 {

 System.out.println(10 / 2);

 }

 System.out.println("Statement 2");

 }

}

Statement 1

Exception in thread "main"

java.lang.ArithmeticException: / by zero

Statement 1

5

Statement 2

• In the case of try with multiple catch blocks the order of catch blocks is important. And it should

be from child to parent, otherwise Compiler Error. Saying Exception xxx has already been caught.

• If there is no chance of raising an exception in try statement, then we are not allowed to maintain

catch block for that exception. If we do so, violation leads to compile time error. but this rule is

applicable only for fully checked exceptions.

class Test {
 public static void main(String arg[]) {
 try {
 System.out.println("Hi");
 } catch (IOException e) {
 }
 }
}

60 | P A G E Satya Kaveti

Test.java:7: error: exception IOException is never thrown in body of corresponding try statement
 } catch (IOException e) {
 ^

• It is not recommended to maintain cleanup code within the catch block. because there is no

guaranty of execution of particular catch block.

• finally block should always execute irrespective of whether the exception is raised or not and

handled or not handled.

• The finally block won’t be executed, if the system itself exists (JVM shutdown) i.e in the case of

System.exit() finally block won’t be executed.

Possible combinations of try, catch, finally

try

{

}

catch (X e)

{

}

finally

{

}

CORRECT

try

{

}

finally

{

}

CORRECT

try

{

}

CE: error: 'try' without 'catch',

'finally' or resource

declarations

try

{

}

System.out.println("Hello");

catch (X e)

{

}

CE: error: 'try' without 'catch',

'finally' or resource declarations

try

{

}

catch (X e)

{

}

System.out.println("Hello");

finally

{

}

CE: error: 'try' without 'catch',

'finally' or resource

declarations

try

{

}

finally

{

}

catch (X e)

{

}

CE: error: 'try' without 'catch',

'finally' or resource

declarations

The following program will demonstrate the control flow in different cases.

class Demo {
 public static void main(String arg[]) {

 try{
 statement1;
 statement2;
 statement3;

 } catch (Exception e)
 {
 statement4;
 } finally
 {
 statement5;
 }
 statement6;
 }
}

61 | P A G E Satya Kaveti

• if there is no exception, then the statements 1, 2, 3, 5, 6 will execute with normal termination.

• if an exception raised at statement-2 and the corresponding catch block matched, then the

statements 1, 4, 5, 6 will execute with normal termination.

• if an exception raised at statement-2 but the corresponding catch block not matched then the

statements 1, 5 will execute with abnormal termination.

• if an exception raised at statement-2 and while executing the corresponding catch block at

statmnt–4 an exception raised then the statements 1, 5 will execute with abnormal termination.

• if an exception raised at statement-5 or at statement-6 then it is always abnormal condition.

What happens if we put return statement on try/catch? Will finally block execute.?

Yes, finally block will execute even if you put a return statement in the try or catch block.

try {
 //try block
 ...
 return success;
}
catch (Exception ex) {
 //catch block

 return failure;
}
finally {
 System.out.println("Inside finally");
}

The answer is yes. finally block will execute. The only case where it will not execute

encounters System.exit().
public class Main {

 public static void main(String[] args) {

 try {

 System.out.println("Start...");

 System.out.println(10 / 0);

 } catch (Exception e) {

 System.out.println("Exception..");

 } finally {

 System.out.println("Finally...");

 }

 }

}

public class Main {

 public static void main(String[] args) {

 try {

 System.out.println("Start...");

 System.out.println(10 / 0);

 } catch (Exception e) {

 System.exit(0);

 } finally {

 System.out.println("Finally...");

 }

 }

}

Start…

Exception...

Finally...

Start...

(abnormal Termination)

What happens when a finally block has a return statement?

Finally block overrides the value returned by try and catch blocks.

public static int myTestingFuncn(){
 try{

 return 5;
 }
 finally {

 return 19;
 }
}

This program would return value 19 since the value returned by try has been overridden by finally.

62 | P A G E Satya Kaveti

Throws

In our code, if there is a chance of raising checked exception, then compulsory we should handle that

checked exception either by using try, catch or we have to delegate that responsibility to the caller using

throws keyword otherwise C.E : must be caught or declared to be thrown

Throws will give an indication to the calling function to keep the called function under try and catch

blocks.It gives an information to the programmer that there may occur an exception so it is better for the

programmer to provide the exception handling code so that normal flow can be maintained

class Cal {
 public void div(String a, String b) throws ArithmeticException,NumberFormatException {
 int c = Integer.parseInt(a) / Integer.parseInt(b);
 }
}

public class A {
 public static void main(String[] args) {
 Cal ob = new Cal();
 try {
 ob.div("a", "b");
 } catch (ArithmeticException e) {
 System.out.println("Divide By Zero");
 } catch (NumberFormatException e) {
 System.out.println("Enter Only INT's");
 } catch (Exception e) {
 System.out.println(" Some Other " + e);
 }
 }
}
Enter Only INT's

In above throws ArithmeticException,NumberFormatException Indicates it may throws these exceptions so

please put ob.div(str,str) method in try, catch block

Throw

Throw keyword is used to explicitly throw an exception.

In above we didn’t create any Exception class Object in throws because JVM automatically creates Objects.

If you want to create Exception class object manually and throw exception using throw keyword.

public class Marks {
 public void pass(int marks) {
 if (marks < 35) {
 throw new ArithmeticException("You are Failed");
 } else {
 System.out.println(" You are Pass : " + marks);
 }
 }

 public static void main(String[] args) {
 Marks m = new Marks();
 m.pass(26);
 }
}
Exception in thread "main" java.lang.ArithmeticException: You are Failed
 at excep.Marks.pass(Marks.java:9)
 at excep.Marks.main(Marks.java:18)

63 | P A G E Satya Kaveti

User Defined Exceptions

User defined exceptions are those which are developed by JAVA programmer as a part of Application

development for dealing with specific problems such as negative salaries, negative ages, etc.

1. Choose the appropriate user defined class must extends either java.lang.Exception or

java.lang.RunTimeException class.

2. That class must contain a parameterized Constructor by taking string as a parameter.

3. Above constructor must call super constructor with string Ex: super(s)

For implementing example, we must create 3 classes

1. User defined Exception class

2. A class with a method which throws User defined Exception

3. Main class which calls above method

1.User Defined Exception class ➔ 1.Extends Exception || 2.Constructor(s) || 3.Super(s)

public class NegativeNumberException extends Exception {
 public NegativeNumberException(String s) {
 super(s);
 }
}

2.A class with a method which throws User defined Exception ➔ throws & throw

public class Salary {
 public void show(int sal) throws NegativeNumberException {
 if (sal < 0) {
 throw new NegativeNumberException("Salary Should be >1");
 } else {
 System.out.println("Your Sal is :" + sal);
 }
 }
}

3.Main class which calls above method

public class UserMain {
 public static void main(String[] args) {
 Salary salary = new Salary();
 try {
 salary.show(-100);
 } catch (NegativeNumberException e) {
 e.printStackTrace();
 }
 }
}
excep.NegativeNumberException: Salary Should be >1
 at excep.Salary.show(Salary.java:8)
 at excep.Salary.main(Salary.java:18)

In Real time CSW Id Start with A1 & Contains 8-digit number, so if given ID not met the requirement

Throws CSWException

64 | P A G E Satya Kaveti

Exception Handling with Method Overriding in Java

If the superclass method does not declare an exception

If the superclass method does not declare an exception, subclass overridden method cannot declare the

new “checked exception” but it can declare “unchecked exception”.

If the superclass method declares an exception

If the superclass method declares an exception, subclass overridden method can declare same, subclass

exception or no exception (delete exception) but cannot declare parent exception.

If the parent class constructor throws checked exception,

If the parent class constructor throws checked exception, Compulsory the child class constructor should

throw the same checked exception or it’s parent otherwise we will get compile time error

Java 1.7 Exception handling Enhancements

Java try-with-resources

• Before java 7, to clean up the resources we have to use finally blocks to write closing statements

manually.

• With Java 7, no need to explicit resource cleanup required, It’s done automatically.

• Automatic resource cleanup done when we are initializing resource in try block. try(resource).

• Cleanup happens because of new interface AutoCloseable. Its close() method is invoked by JVM as

soon as try block finishes.

• In java 7, we have a new super interface java.lang.AutoCloseable. This interface has one method:

void close() throws Exception;

All File.IO.* Streams(InputStream,OutputStream,) & ResultSet by default implements

AutoClosable interface.

• When we open any such AutoCloseable resource in special try-with-resource block, immediately after

finishing the try block, JVM calls this close() method on all resources initialized in “try()” block.

• If you want to use this in custom resources, then implementing AutoCloseable interface is mandatory.

otherwise, program will not compile.

https://docs.oracle.com/javase/7/docs/api/java/lang/AutoCloseable.html

65 | P A G E Satya Kaveti

Case 1 : Try-with- Single resource

public class Test {
 public static void main(String args[]) {
 try (FileInputStream input = new FileInputStream("file.txt")) {

 int data = input.read();
 while (data != -1) {
 System.out.print((char) data);
 data = input.read();
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}
Satya
shiva
rma
hanu
vinay
govind
ramesh

The opened resource will be limited to inner try block, so not available for catch/final

 try (FileInputStream input = new FileInputStream("file.txt"))
 {

 input.read(); // Available, No Issue
 }

 catch (Exception e) {
 e.printStackTrace();
 input.close(); // Not Available, No Issue
 }

 finally {
 input.close();
 }
Test.java:18: error: cannot find symbol input.close();
 ^

Case 2: Try-with- Multiple Resources

 we can declare it by line by line separated by semicolons.

public class Test {
 public static void main(String args[]) {
 try (

 FileInputStream input = new FileInputStream("file.txt");
 FileOutputStream output = new FileOutputStream(file.txt")
) {
 // Write to file
 for (int i = 0; i < 10; i++) {
 output.write(i);
 }

 // Read from File
 int data = input.read();
 while (data != -1) {
 System.out.print(data);
 data = input.read();
 }
 } catch (Exception e) {
 e.printStackTrace();
 } finally {

 }
 }
}

66 | P A G E Satya Kaveti

Case 3: Try-with- Resources – Exception in Try block

If a try block throws an exception and one or more exceptions are thrown by the try-with-resources, the

exceptions thrown by try-with-resources are suppressed.

You can get these suppressed exceptions by using the Throwable.getSuppress() method of Throwable.

public class Test {
 public static void main(String args[]) {
 try (FileInputStream input = new FileInputStream(“nofile.txt");) {

 } catch (Exception e) {
 System.out.println("Catch block");
 e.printStackTrace();
 } finally {

 System.out.println("finally");
 }
 }
}
Catch block
java.io.FileNotFoundException: nofile.txt (The system cannot find the path specified)
 at core.Test.main(Test.java:9)
finally

Case 4: Java9 Enhancement - Resource declared outside the try block

In Java 7, try-with-resources has a limitation that requires resource should declare within try block only,

otherwise compiler generates an error: <identifier> expected.

FileInputStream input = new FileInputStream("file.txt");
 try (input) {
 }
error: <identifier> expected
 try(input)

To deal with this error, try-with-resource is improved in Java 9 and now we can use reference of the

resource that is not declared locally.

public class Test {
 public static void main(String args[]) throws IOException {
 FileInputStream input = new FileInputStream("file.txt");
 try (input) {
 int data = input.read();
 while (data != -1) {
 System.out.print((char) data);
 data = input.read();
 input.close();
 }
 } catch (Exception e) {
 e.printStackTrace();
 input.close();
 }finally {
 input.close();
 }
 }
}

Now we can access input variable in catch and finally block

Catch with Multiple Exception classes

From Java 7 onwards, you can catch multiple exceptions in single catch block using (|) symbol.

 catch(NullPointerException | IndexOutOfBoundsException ex)

 {

 Ex.printStackTrace();

 }

67 | P A G E Satya Kaveti

• If a catch block handles more than one exception type, then the catch parameter is

implicitly final. In this example, the catch parameter ex is final and therefore you cannot assign

any values to it within the catch block.

• The Exceptions must be in same level of Hierarchy.

catch(NullPointerException | Exception ex) {
 throw ex;

 } The exception NullPointerException is already caught by the alternative

Exception Handling Interview Questions

What will happen if you put System.exit(0) on try or catch block?

In normal Finally block will always execute. The only case finally block is not executed is System.exit(0).

In advanced case it will execute in following case.

By Calling System.exit(0) in try or catch block, its stops execution & throws SecurityException.

• If System.exit(0) NOT throws SecurityException, then finally block Won’t be executed

• if System.exit(0) throws SecurityException then finally block will be executed.

java.lang.System.exit() will terminates the currently executing program by JVM.

• exit(0) : Generally used to indicate successful termination.

• exit(1) or exit(-1) or any other non-zero value –indicates unsuccessful termination.

What happens if we put return statement on try/catch? Will finally block execute?

Yes, finally block will execute even if you put a return statement in the try block or catch block.

public class Demo {
 public static int div(int a, int b) {
 try {
 return a / b;
 } catch (ArithmeticException e) {
 System.out.println(" In Catch : 0");
 return 0;
 } finally {
 System.out.println(" In Finally : 1");
 return 1;
 }
 }
 public static void main(String[] args) {
 System.out.println("Return Value is : " + div(10, 0));
 }
}
In Catch: 0
In Finally: 1
Return Value is: 1

finally block will execute. The only case where it will not execute is when it encounters System.exit().

What happens when a finally block has a return statement?

Finally block overrides the value returned by try and catch blocks.

public static int myTestingFuncn(){
 try{

 return 5;
 }
 finally {

 return 19;
 }
}

This program would return value 19 since the value returned by try has been overridden by finally.

68 | P A G E Satya Kaveti

Why do you think Checked Exception exists in Java, since we can also convey error

using RuntimeException?

Most of checked exceptions are in java.io package, which make sense because if you request any

system resource and it is not available, then a robust program must be able to handle that situation

gracefully.

By declaring IOException as checked Exception, Java ensures that you should provide that gracefully

exception handling. Another possible reason could be to ensuring that system resources like file

descriptors, which are limited in numbers, should be released as soon as you are done with that using

catch or finally block

Have you faced OutOfMemoryError in Java? How did you solve that?

OutOfMemoryError in Java is a subclass of java.lang.VirtualMachineError and JVM throws

java.lang.OutOfMemoryError when it ran out of memory in the heap.

An easy way to solve OutOfMemoryError in java is to increase the maximum heap size by using JVM

options "-Xmx512M", this will immediately solve your OutOfMemoryError.

6. java. lang package
The most commonly used and general-purpose classes which are required for any java program are

grouped into a package which is nothing but a “java.lang.package”.

All the classes and interfaces which are available in this package are by default available to any java

program. There is no need to import this class.

1. Object Class

2. String class

3. StringBuffer Class

4. StringBuilder Class

5. Wrapper Classes

http://javarevisited.blogspot.com/2011/08/increase-heap-size-maven-ant.html

69 | P A G E Satya Kaveti

1.Object Class

The most common general methods which can be applicable on any java object are defined in object

class. Object class is the parent class of any java class, whether it is predefined, or programmer defined.

Hence all the object class methods are by default available to any java class.

Object class define the following 11 methods

1. toString()

2. equals(Object otherObject)

3. hashcode()

4. clone()

5. finalize()

6. Class getClass()

7. void wait()

8. void wait(long ms)

9. void wait(long ms, int nano)

10. void notify()

11. void notifyAll()

1. String toString():Returns a string representation of the object.

• Whenever we are passing object reference as argument to System.out.println() internally JVM

will call toString() on that object.

• If we are not providing implementation to toString() method, then Object class toString() will be

executed which is implemented as follows

public String toString() {
 return getClass.getName() + '@' + Integer.toHexString(HashCode);
 }

2. boolean equals(Object otherObject) – It is used to simply verify the equality of two objects. Its

default implementation is simply checking the references of two objects, to verify their equality. By

default, two objects are equal if and only if they are stored in the same memory address.

In String class (not StringBuilder, not StringBuffer) & All Wrapper classes equals() method is

overridden for Content Comparison

a. equals() at Object comparison level

• If we are comparing non-String Objects equals() method it compares references of Objects.

• It is same as “== “ Operator

b. equals() at String Comparison Level

• If we are comparing String data on .eqauls() method compares only content.

• References are doesn’t matter.

70 | P A G E Satya Kaveti

3. int hashcode() – Returns a unique integer value for the object in runtime. By default, integer value is

mostly derived from memory address of the object in heap (but it’s not mandatory always).

• If two objects are equal according to the equals(Object) method, then calling

the hashcode() method on each of the two objects must produce the same integer result.

 String s1 = new String("Satya");
 String s2 = new String("Satya");
 System.out.println("s1: "+s1.hashCode());
 System.out.println("s2: "+s2.hashCode());
 System.out.println(s1.equals(s2));

 s1: 79657294
 s2: 79657294
 true

• Whenever we override the equals() method, we should override hashcode() method.

• In String class(not StringBuilder, not StringBuffer) & All Wrapper classes equals()

method is overridden for Content Comparison.

public class Employe {
 int id;
 String name;

//Setters & Getters
 @Override
 public boolean equals(Object obj) {
 Employe e = (Employe) obj;
 boolean flag = false;
 if (this.getId() == e.getId()) {
 flag = true;
 }
 return flag;
 }
 public static void main(String[] args) {
 Employe e1 = new Employe();
 Employe e2 = new Employe();
 e1.setId(101);
 e2.setId(101);
 System.out.println(e1.equals(e2));//true
 }
}

So, are we done? Not yet. Let’s test again above modified Employee class in different way.

public static void main(String[] args) {
 Employe e1 = new Employe();
 Employe e2 = new Employe();
 e1.setId(101);
 e2.setId(101);

 Set<Employe> set = new HashSet<>();
 set.add(e1);
 set.add(e2);
 System.out.println(set); //[basic.Employe@15db9742, basic.Employe@6d06d69c]
 }

Above class prints two objects in print statement. If both employee objects have been equal, in

a Set which stores only unique objects, there must be only one instance inside HashSet.

We are missing the second important method hashCode(). As java docs say, if you

override equals()method then you must override hashCode() method

71 | P A G E Satya Kaveti

public class Employe {
 int id;
 String name;
 @Override
 public boolean equals(Object obj) {
 Employe e = (Employe) obj;
 boolean flag = false;
 if (this.getId() == e.getId()) {
 flag = true;
 }
 return flag;
 }
 @Override
 public int hashCode() {
 return getId();
 }
 public static void main(String[] args) {
 Employe e1 = new Employe();
 Employe e2 = new Employe();
 e1.setId(101);
 e2.setId(101);
 Set<Employe> set = new HashSet<>();
 set.add(e1);
 set.add(e2);
 System.out.println(set); //[basic.Employe@65]
 }
}

Apache commons provide two excellent utility classes HashCodeBuilder &EqualsBuilder for generating

hash code and equals methods. Ref.Example

HashCodeBuilder

create an instance of HashCodeBuilder. Append the fields we’re gonna use to calculate the hashcode. The

final result of the actual hashcode can be obtained by calling the toHashCode() from the instance

of HashCodeBuilder.

EqualsBuilder

On the first line you can check to see if the passed object is an instance of the same object, we use

the instanceof operator. We then compare the values stored in both objects using the EqualsBuilder class.

To get the equality result you must remember to call the isEquals() method.
public class Emp {
 int id;
 String name; // Setters,Getters,Constructors

 @Override //Implement the hashCode method using HashCodeBuilder.
 public int hashCode() {
 return new HashCodeBuilder().append(id).append(name).toHashCode();
 }

 @Override //Implement the equals method using the EqualsBuilder.
 public boolean equals(Object obj) {
 if (!(obj instanceof Emp)) {
 return false;
 }
 Emp e = (Emp) obj;
 return new EqualsBuilder().append(this.id, e.id).append(this.name, e.name).isEquals();
 }
 public static void main(String[] args) {
 Emp e1 = new Emp(101, "Satya");
 Emp e2 = new Emp(101, "Satya");
 System.out.println(e1);
 System.out.println(e2);
 System.out.println(e1.equals(e2));
 }
}
core.Emp@4bfe2d0
core.Emp@4bfe2d0
true

https://commons.apache.org/proper/commons-lang/
https://commons.apache.org/proper/commons-lang/apidocs/org/apache/commons/lang3/builder/HashCodeBuilder.html
https://commons.apache.org/proper/commons-lang/apidocs/org/apache/commons/lang3/builder/EqualsBuilder.html
https://kodejava.org/how-to-implement-the-hashcode-and-equals-method-using-apache-commons/
https://commons.apache.org/proper/commons-lang/apidocs/org/apache/commons/lang3/builder/EqualsBuilder.html

72 | P A G E Satya Kaveti

4.Object clone(): Cloning is the process of creating a copy of an Object.
Test t1 = new Test();
Test t2 = (Test)t1.clone();

An Object is said to be cloneable iff the corresponding class has to implement java.lang.cloneable

interface. It doesn’t contain any methods it is a marker interface.

Rules

• To clone an Object, it must implement java.lang.Cloneable Interface

• Otherwise, it will return CloneNotSupportedException.

public class Student implements Cloneable {
 int sno;
 String name;
 public Student(int sno, String name) {
 this.sno = sno;
 this.name = name;
 }
 public static void main(String[] args) throws CloneNotSupportedException {
 Student s1 = new Student(101, “Satya”);
 Student s2 = (Student) s1.clone();

 System.out.println(“S1 data ➔ “+s1.sno+”:”+s1.name);
 System.out.println(“S2 data ➔ “+s2.sno+”:”+s2.name);
 }
}
S1 data ➔ 101:Satya
S2 data ➔ 101:Satya

We have two types of Cloning in java - Shallow Cloning & Deeply Cloning

1. Shallow copy Cloning – Default Implementation

• The default version of clone() method creates the shallow copy of an object.

• The shallow copy of an object will have exact copy of all the fields of original object.

• If original object has any references to other objects as fields, then only references of those

objects are copied into clone object, copy of those objects are not created

• Any changes made to those objects through clone object will be reflected in original object.

• Shallow copy is not 100% independent of original object.

class Address {
 String dno;
 String city;
 public Address(String dno, String city) {
 super();
 this.dno = dno;
 this.city = city;
 }
}
class Student implements Cloneable {
 int sno;
 String name;
 Address address;
 public Student(int sno, String name, Address address) {
 this.sno = sno;
 this.name = name;
 this.address = address;
 }
 @Override
 protected Object clone() throws CloneNotSupportedException {
 return super.clone();
 }
}

73 | P A G E Satya Kaveti

public class ShallowClone {
public static void main(String[] args) throws CloneNotSupportedException {
 Address addr = new Address(“3-100”, “HYDERABAD”);
 Student s1 = new Student(101, “Satya”, addr);
 Student s2 = (Student) s1.clone();

System.out.println(s1.address.city+” : “+s2.address.city); //HYDERABAD : HYDERABAD

s1.address.city = “KANURU”; //Changing the Value
System.out.println(s1.address.city+” : “+s2.address.city);//KANURU : KANURU

 //S1,S2 are dependent to each other, sharing same Object reference
}
}

2. Deeply copy Cloning – Override clone method

• To create the deep copy of an object, you have to override clone() method

• Deep copy of an object will have exact copy of all the fields of original object just like shallow

copy. But in additional, if original object has any references to other objects as fields, then copy

of those objects are also created by calling clone() method on them.

• That means clone object and original object will be 100% disjoint. They will be 100% independent

of each other & Changes won’t reflect each other.

class Address implements Cloneable{
 String dno;
 String city;
 public Address(String dno, String city) {
 this.dno = dno;
 this.city = city;
 }
 @Override
 protected Object clone() throws CloneNotSupportedException {
 return super.clone();
 }
}

 class Student implements Cloneable {
 int sno;
 String name;
 Address address;
 public Student(int sno, String name, Address address) {
 this.sno = sno;
 this.name = name;
 this.address = address;
 }
 @Override
 protected Object clone() throws CloneNotSupportedException {
 Student student = (Student) super.clone();
 student.address = (Address) address.clone();
 return student;
 }
}

public class DeeplyClone {
public static void main(String[] args) throws CloneNotSupportedException {
 Address addr = new Address(“3-100”, “HYDERABAD”);
 Student s1 = new Student(101, “Satya”, addr);
 Student s2 = (Student) s1.clone();

System.out.println(s1.address.city+” : “+s2.address.city); //HYDERABAD : HYDERABAD

 s1.address.city = “KANURU”; //Changing the Value
 System.out.println(s1.address.city+” : “+s2.address.city);//KANURU : HYDERABAD
 //S1,S2 are independent to each other

}
}
HYDERABAD : HYDERABAD
KANURU : HYDERABAD

74 | P A G E Satya Kaveti

5. void finalize():Called by the garbage collector on an object, when garbage collection determines

that there are no more references to the object.

6.Class getClass():Returns the runtime class of an object.getClass(), or the class-literal

- Foo.class return a Class object, which contains some metadata about the class:

• name

• package

• methods

• fields

• constructors

• annotations

we can create Class object by following ways

Class c = Class.forName(“StudentBO”)

Class c = StudentBO.class

Class c = ob.getClass();

public static void main(String[] args) throws Exception {
 TestApp a = new TestApp();
 Class c1 = a.getClass();
 Class c = Class.forName("java.lang.String");
 System.out.print("Class represented by c : " + c.toString());

 Object obj = c.newInstance();
 }

public class Test {
 public static void main(String args[]) throws IOException, ClassNotFoundException {
 Class c = Class.forName("java.lang.Object");
 System.out.println("Name : "+c.getName());
 System.out.println("getConstructors :"+c.getConstructors());
 System.out.println("getFields : "+c.getFields());
 System.out.println("getMethods : "+c.getMethods());

 java.lang.reflect.Method[] methods = c.getMethods();
 for (java.lang.reflect.Method m : methods) {
 System.out.println("====> "+m);
 }
 }
}
====> public final void java.lang.Object.wait(long,int)
====> public native int java.lang.Object.hashCode()
====> public final native void java.lang.Object.notify()
====> public final native void java.lang.Object.notifyAll()… all 9 methods will come

7.void wait():current thread will wait, until another thread notifies

8.void wait(long ms): current thread will wait for the specified milliseconds, until another thread

notifies

9.void wait(long ms, int nano): current thread will wait for the specified milliseconds and

nanoseconds, until another thread notifies.

10.void notify():Wakes up a single thread that is waiting on this object's monitor.

11.void notifyAll():Wakes up all threads that are waiting on this object's monitor.

75 | P A G E Satya Kaveti

2.String Class

There are two ways to create String object:

1.By string literal

String s1="Welcome";
String s2="Welcome";//It doesn't create a new instance

2.By new keyword

String s1=new String("Welcome");//creates two objects and one reference variable

Case 1 : literal VS Object
public class StringDemo {
 public static void main(String[] args) {
 String s1 = "Cat";
 String s2 = "Cat";

 String s3 = new String("Cat");

 String s4 = new String("Rat");
 String s5 = "Rat";

 System.out.println(s1 == s2); // true
 System.out.println(s1 == s3); // false
 }
}

• first line of code is literal type, so first it will search in SCP, String Cat is existed or not. here ‘cat’

not exist on the String constant pool so, “Cat” will create in SCP& it will reference to s1.

• second line of code is literal type, so first it will search in SCP, String ’Cat’ is existed or not.

here ‘cat’ already exists on the String constant pool. so s2 reference to existed "Cat”.

• Third line of code is Object type, but it has literal ’Cat’, so first it will search “Cat” in SCP, it is

already present, so it won’t create literal in SCP. then it will create String Object with given string

no matter if Object with same String literal already exist or not.

• Fourth line of code is Object type, but it has literal ’Rat’, so first it will search “Rat” in SCP, it is

not present. so, it will create literal in SCP, then it will create String Object with given string.

• Fifth line, it is literal type, so first it will search in SCP, String ’Rat’ is existed or not. here ‘Rat’

already exists on the SCP, but it does not have any references. so s5 reference to existed "Rat”.

76 | P A G E Satya Kaveti

Case 2:
 String s1 = "abc";
 String s2 = s1;
 s1 += "d";
 System.out.println(s1+", "+s2+", "+(s1==s2));

abcd, abc, false

Case 3:
StringBuffer s1 = new StringBuffer("abc");
StringBuffer s2 = s1;

 s1.append("d");
System.out.println(s1+", "+s2+", "+(s1==s2));

abcd, abcd, true

StringBuffer operates on Same Object.

Whenever we created String of Object type, first it will store in SCP & then String of Object type will be

created. This is applicable for StringBuffer & StringBuilder also

Case 4:
 String a = "hello" + " world";
 String b = "hello world";
 System.out.println(a==b); //TRUE

abc

abcd

77 | P A G E Satya Kaveti

When concatenating two string literals "a"+"b" , JVM joins the two values & then check the string pool,

then it realizes the value already exists in the pool so it just simply assigns this reference to the String.

Case 5 : (+= uses StringBuilder Inside to Create & Append String)
 String a = "Bye";
 a += " bye!";

 String b = "Bye bye!";

 System.out.println(a == b);//FALSE

This case is kind of different tho, because you’re using the += operator which when compiled to bytecode

it uses StringBuilder to concatenate the strings, so this creates a new instance of StringBuilder Object

thus pointing to a different reference. (string pool vs Object). Oracle Says, to improve performance,

instead of using string concatenation, use StringBuffer.append(). String objects are immutable

Performance

It’s better to use StringBuilder these days, in almost every case, but here’s what happens:

When you use + with two strings, it compiles code like this:

String third = first + second;

To something like this

StringBuilder builder = new StringBuilder(first);
builder.append(second);
third = builder.toString();

for example, you might be using many different appending statements, or a loop like this:

for(String str : strings) {
 out += str;
}

Here, a new StringBuilder instance, & a new String is required in each iteration (Strings are immutable. For

each + operation it will create new String object). This is very wasteful, Replacing this with StringBuilder means

you can just produce a single String and not fill up the heap with unused Strings.

To get the String literal which is created in SCP, we use intern() method

String s=new String("Welcome");
String s2=s.intern();
System.out.println(s2);// Welcome

In java, string objects are immutable. Immutable simply means unmodifiable or unchangeable.

class Testimmutablestring{
 public static void main(String args[]){
 String s1="Sachin";
 s.concat(" Tendulkar");//concat() method appends the string at the end
 System.out.println(s);//Sachin, because strings are immutable objects
 }
}

78 | P A G E Satya Kaveti

3,4.StringBuffer, StringBuilder Classes

String (think like it is Object type of String) StringBuffer

String class is immutable. StringBuffer class is mutable.

String is slow and consumes more memory when

you concat too many strings because every time it

creates new instance.

StringBuffer is fast and consumes less memory

when you concat strings.

String class overrides the equals() method of

Object class. So you can compare the contents of

two strings by equals() method.

StringBuffer class doesn't override the

equals() method of Object class.

String is synchronized i.e. thread safe StringBuffer is synchronized i.e. thread safe. It

means two threads can't call the methods of

StringBuffer simultaneously.

 String a = new String("Cat");
 String b = new String("Cat");
 System.out.println("String : " + a.equals(b)); //true

 StringBuffer b1 = new StringBuffer("Cat");
 StringBuffer b2 = new StringBuffer("Cat");
 System.out.println("StringBuffer : " + b1.equals(b2)); //false

Creates an empty StringBuffer object with default initial capacity 16. If it reaches max capacity then a new

StringBuffer object will be created with new capacity = (currentcapacity + 1) * 2

StringBuffer sb = new StringBuffer();

1st --> 16 =16
2nd --> (16+1)*2 =34
3rd --> (34+1)*2 =70

StringBuffer StringBuilder

StringBuffer is synchronized i.e. thread safe. It

means two threads can't call the methods of

StringBuffer simultaneously.

StringBuilder is non-synchronized i.e. not thread safe.

It means two threads can call the methods of

StringBuilder simultaneously.

StringBuffer is less efficient than StringBuilder. StringBuilder is more efficient than StringBuffer.

 String StringBuffer StringBuilder

Storage Area Constant String Pool Heap Heap

Modifiable No (immutable) Yes(mutable) Yes(mutable)

Thread Safe Yes Yes No

Performance Fast Very slow Fast

79 | P A G E Satya Kaveti

1.What is immutable object? Can you write immutable object?

Don’t confuse over SingleTon class

Immutable classes are Java classes whose objects cannot be modified once created.

1. Declare the class as final so it can’t be extended.

2. Make all fields private & final so that direct access is not allowed & it’s values can be assigned

only once.

3. Initialize all the fields via a constructor

4. Write getters only, not setters.

// An immutable class
final class Student {

 final int sno;

 final String name;

 public Student(int sno, String name) {

 this.name = name;

 this.sno = sno;

 }

 public String getName() {

 return name;

 }

 public int getsno() {

 return sno;

 }

}

public class Test {
 public static void main(String args[]) {
 Student s1 = new Student(101, "Satya");
 s1.name = "Vijay";
 }
}
Exception in thread "main" java.lang.Error: Unresolved compilation problem:
 The final field Student.name cannot be assigned

All String & Wrapper class objects are Immutable

2.What is Singleton? Can you write critical section code for singleton?

A Singleton class is one which allows us to create only one object for JVM.

Rules:

• Create Singleton class Object make it as private, so no other classes will access it.

• Create private constructor, so no other classes won’t create Object using new Student(),

because it is not visible to out the classes.

• Every Singleton class contains at least one static factory method, make it public so, it is visible

other classes

class Student {

 private static Student st;

 private Student() {
 System.out.println("OBJECET Created FIRST TIME");
 }
 public static Student getObject() {
 if (st == null) {
 st = new Student();
 } else {
 System.out.println("OBJECET ALREDAY CREATED");
 }
 return st;
 }
}

80 | P A G E Satya Kaveti

public class Test {
 public static void main(String args[]) {

 Student s1 = Student.getObject();
 System.out.println("s1 : " + s1.hashCode());

 Student s2 = Student.getObject();
 System.out.println("s2 : " + s2.hashCode());

 System.out.println("s1==s2 : " + (s1 == s2));
 }
}
OBJECET Created FIRST TIME
s1 : 1829164700
OBJECET ALREDAY CREATED
s2 : 1829164700
s1==s2 : true

In above code, it will create multiple instances of Singleton class if called by more than one thread in

parallel. Double checked locking of Singleton is a way to ensure only one instance of Singleton class is

created through application life cycle.

In double checked locking pattern, where only critical section of code is locked. Programmers call it

double checked locking because there are two checks for _instance == null.one is without locking and

other with locking (inside synchronized) block. Here are how double-checked locking looks like in Java

public static Singleton getInstanceDC() {
 if (_instance == null) { // Single Checked
 synchronized (Singleton.class) {
 if (_instance == null) { // Double checked
 _instance = new Singleton();
 }
 }
 }
 return _instance;
}

How do you reverse a String in Java without using StringBuffer?

The Java library provides StringBuffer and StringBuilder class with reverse() method, which can be

used to reverse String in Java. Following code without using those classes.

String reverse = "";
String source= "My Name is Khan";

for(int i = source.length() -1; i>=0; i--){
 reverse = reverse + source.charAt(i);
}

How to Print duplicate characters from String?
public class RepreatedChar {
 public static void main(String[] args) {
 String a = "success";

 // 1.convert into char array. [‘s’, ‘u’, ‘c’, ‘c’, ‘e’, ‘s’, ‘s’,]
 char[] c = a.toCharArray();

 // 2.create Hashmap store key as character, count as value
 HashMap map = new HashMap<>();
 for (char ch : c) {
 // 3.Check if Map contains given Char as <key> or not
 if (map.containsKey(ch)) {
 // if their, get the value & increment it
 int i = (int) map.get(ch);
 i++;
 // add updated value to it
 map.put(ch, i);

81 | P A G E Satya Kaveti

 } else {
 // if not their , add key & value as 1
 map.put(ch, 1);
 }
 }
 Set set = map.entrySet();
 Iterator iterator = set.iterator() ;
 while (iterator.hasNext()) {
 Map.Entry entry = (Entry) iterator.next();
 System.out.println(entry.getKey()+" : "+entry.getValue());
 }
 }
}
s : 3
c : 2
u : 1
e : 1

How to Check given String contains Number or not
public class RegEx {
 public static void main(String[] args) {
 // Regular expression in Java to check if String is number or not
 Pattern pattern = Pattern.compile(".*[^0-9].*");
 String[] inputs = { "123", "-123", "123.12", "abcd123" };
 /* Matches m = pattern.match(input);
 * boolean ch = m.match(); */
 for (String input : inputs) {
 System.out.println("does " + input + " is number : " + !pattern.matcher(input).matches());
 }

 // Regular expression in java to check if String is 6 digit number or not
 String[] numbers = { "123", "1234", "123.12", "abcd123", "123456" };
 Pattern digitPattern = Pattern.compile("\\d{6}");
 // Pattern digitPattern = Pattern.compile("\\d\\d\\d\\d\\d\\d");
 for (String number : numbers) {
 SOP("does " + number + " is 6 digit number : " + digitPattern.matcher(number).matches());
 }
 }
}

Reverse Words in a String
public class RevWords {
 public static void main(String[] args) {

// using s.split("\\s");
 String s = "My name is Satya";
 String words[] = s.split("\\s");
 String rev = "";
 int len = words.length;
 for (int i = (len - 1); i >= 0; i--) {
 rev = rev + words[i];
 }
 System.out.println(rev);

// using Collections.reverse(str)
 List<String> word = Arrays.asList(s.split("\\s"));
 Collections.reverse(word);
 System.out.println(word);
 }
}

5.Wrapper classes

Collections in Java deal only with objects; if you want to store primitive type values into any of these

Collection classes, you need to Convert the primitive type to Object Type.

82 | P A G E Satya Kaveti

The main objectives of wrapper classes are:

• To Wrap primitives into object form. So that we can handle primitives also just like objects.

• To Define several utility functions for the primitives (converting primitive to the string etc.)

Each primitive type has a corresponding wrapper class.

Primitive Type Wrapper Class

byte Byte

short Short

int Int

long Long

float Float

double Double

char Character

boolean Boolean

Primitive type to wrapper class

1.using constructors

// 1. using constructor
Integer object = new Integer(10);

2.using static factory methods such as valueOf() (except Character)

// 2. using static factory method
Integer anotherObject = Integer.valueOf(10);

Similarly, we can convert other primitive types like boolean to Boolean, char to Character, etc.

Wrapper class to primitive type

Converting from wrapper to primitive type is simple. We can use the corresponding methods to get the

primitive type. e.g. intValue(), doubleValue(), shortValue() etc.

Integer object = new Integer(10);
int val = object.intValue(); //wrapper to primitive

Autoboxing and Unboxing

Beginning with JDK 5, Java added two important features: autoboxing and auto-unboxing.

Autoboxing is the automatic conversion of the primitive types into their corresponding object wrapper

classes. For example, converting an int to an Integer, a char to a Character, and so on. We can

simply pass or assign a primitive type to an argument or reference accepting wrapper class object.

List<Integer> integerList = new ArrayList<>();

for (int i = 1; i < 50; i += 2)
{
 integerList.add(i); //autoboxing – Automatically converts int to Integer
}

83 | P A G E Satya Kaveti

Unboxing happens when the conversion happens from wrapper class to its corresponding primitive type.

It means we can pass or assign a wrapper object to an argument or reference accepting primitive type.

public static int sumOfEven(List<Integer> integerList)
{
 int sum = 0;
 for (Integer i: integerList) {
 if (i % 2 == 0)
 sum += i; //Integer to int
 }
 return sum;
}

In above example, the remainder (%) and unary plus (+=) operators do not apply on Integer objects. The

compiler automatically converts an Integer to an int at runtime by invoking the intValue()method.

Integer i = 10;// it will create Integer value of 10 using Autoboxing
int j = i;// ;// it will convert Integer to int using Unboxing

Wrapper Classes Internal Caching

Wrapper classes are immutable in java, Right? “YES”. So, like string pool, they can also have their pool,

right? “Great Idea”. Well, it’s already there. JDK provided wrapper classes also provide this in form of

instance pooling i.e. each wrapper class store a list of commonly used instances of own type in form of

cache and whenever required, you can use them in your code. It saves memory on your program runtime.

In Integer.java class, there is an inner class i.e. IntegerCache. When you assign a new int to Integer type

like below

Integer i = 10; //OR
Integer i = Integer.valueOf(10);

An already created Integer instance is returned and reference is stored in i. Please note that if you use

new Integer(10); then a new instance of Integer class will be created, and caching will not come into

picture. Its only available when you use Integer.valueOf() OR directly primitive assignment (which

ultimately uses valueOf() function)

 Integer a1 =new Integer(100);
 Integer a2 = 100;
 Integer a3 = 100;
 System.out.println(a1==a2); //False
 System.out.println(a2==a3); //True

 int a4 = 100;
 int a5 = 100;
 System.out.println(a4==a5); //True

If you want to store a bigger number of instances, you can use runtime parameter as below:

-Djava.lang.Integer.IntegerCache.high=2000

84 | P A G E Satya Kaveti

Garbage collection

• In C/C++, programmer is responsible for both creation and destruction of objects. Usually

programmer neglects destruction of useless objects. Due to this negligence, at certain point

enough memory may not be available for creation of new objects and entire program will

terminate abnormally causing OutOfMemoryErrors.

• But in Java, the programmer need not to care for all those objects which are no longer in use.

Garbage collector destroys these objects.

• Garbage collector is best example of Daemon thread as it is always running in background.

• Main objective of Garbage Collector is to free heap memory by destroying unreachable objects

The ways to make an object eligible for Garbage Collector

Even though the programmer is not responsible for destruction of objects it’s good programming practice

to make an object eligible for Garbage Collector if it is no longer required.

The following are different ways for this

1. Nullifying the reference Variable

2. Reassigning the reference Variable

3. The Objects Created inside a method

4. The Island of Isolation

5. Static variables Garbage Collection

1.Nullifying the reference Variable

If an object is no longer required assign null to all its reference variables.

https://www.geeksforgeeks.org/daemon-thread-java/

85 | P A G E Satya Kaveti

2. Reassigning the reference Variable

If an object is no longer required then, assigning its reference variables to some other objects then, that

old object automatically eligible for garbage collection.

3.The Objects Created inside a method

The objects which are created in a method are by default eligible for Garbage Collector, once the method

execution completes.

Case 1:

class Test
{
public static void main(String arg[])
{
 m1();
//Two Objects s1,s2 eligible for gc
}

public static void m1()
{
 Student s1 = new Student();
 Student s2 = new Student();
//No Objects eligible for gc
}
}

Case 2:

class Test {
 public static void main(String arg[]) {
 Student s = m1();

 //One Object- s2 eligible for gc
 }
 public static Student m1() {
 Student s1 = new Student();
 Student s2 = new Student();
 return s1;// returning s1
 }
}

86 | P A G E Satya Kaveti

4. The Island of Isolation
Obj1 references Obj2 and Obj2 references Obj1. Neither Object 1 nor Object 2 is referenced by any other

object. That’s an island of isolation.

Basically, an island of isolation is a group of objects that reference each other but they are not referenced

by any active object in the application. Strictly speaking, even a single unreferenced object is an island of

isolation too.

class Test
{
Test i;

public static void main(String[] args)
{
Test t1 = new Test();
Test t2 = new Test();
Test t3 = new Test();

t1.i = t2;
t2.i = t3;
t3.i = t1;

t1 = null;

//No Object eligible for Garbage Collector

t2 = null;

//No Object eligible for Garbage Collector

t3 = null;

//All Objects eligible for Garbage Collector
}
}

5.Static variables Garbage Collection
Static variables cannot be eligible for garbage collection. They can be garbage collected when the

respective class loader drops the class or is itself collected for garbage.

87 | P A G E Satya Kaveti

What are the methods to request JVM to run Garbage Collector?

We can request JVM to run Garbage Collector but there is no guarantee whether JVM accepts our

request or not. We can do this by using the following ways.

1.By System class

‘System’ class contains a static ‘gc’ method for requesting JVM to run Garbage Collector.

System.gc();

2.By Using Runtime Class

A java application can communicate with JVM by using Runtime class Object. We can get Runtime Object

as follows.

Runtime runtime = Runtime.getRuntime();
runtime.gc()

Once we get Runtime Object, we can apply the following methods on that object.

• freeMemory(): returns the free memory available in the loop

• totalMemory(): returns heap size

• gc(): for requesting JVM to run Garbage Collector

gc() method available in the System class is static method, but gc() method available in Runtime

classis an instance method.

finalize()

• Just before destroying any object, Garbage Collector always calls finalize() to perform cleanup

activities.

• finalize() is available in the Object class which is declared as follows.

protected void finalize() throws Throwable
{
}

case1: Garbage Collector always calls finalize() on the Object which is eligible for Garbage Collection

and the corresponding class finalize method will be executed.

class Test {
 public static void main(String arg[]) {
 String s = new String("raju");

 //Test s = new Test();
 s = null;
 System.gc();
 System.out.println("end of main method");
 }

 public void finalize() {
 System.out.println("finalize method called");
 }
}
O/P:- end of main method.

In this case String Object is eligible for G.C and hence String class finalize() method has been executed.

In the above program if we are replacing String Object with Test Object then Test class finalize() will be

executed. In this case O/P is end of main method.

finalize method called
end of main method

case2: we can call finalize() explicitly in that case it will execute just like a normal method and object

won’t be destroyed.

88 | P A G E Satya Kaveti

While executing finalize() method if any exception is uncaught, it is simply ignored by the JVM but if we

are calling finalize method explicitly and if an exception is uncaught, then the program will be terminated

abnormally.

class Test {
 public static void main(String arg[]) {
 Test s = new Test();

 //s.finalize();
 s = null;
 System.gc();
 System.out.println("End of main method");
 }

 public void finalize() {
 System.out.println("finalize method");
 System.out.println(10 / 0);
 }
}
O/P:- finalize method
end of main method

No. final finally finalize

1) final is used to apply restrictions on

class, method, and variable.

final class can't be inherited,

final method can't be overridden, and

final variable value can't be changed.

finally is used to place

important code, it will be

executed whether exception is

handled or not.

finalize is used to perform

clean up processing just before

object is garbage collected.

2) final is a keyword. finally is a block. finalize is a method.

Types of Garbage Collectors

When an object is no longer used, the garbage collector reclaims the underlying memory and reuses it for

future object allocation. This means there is no explicit deletion, and no memory is given back to the

operating system.

Java has four types of garbage collectors,

• Serial Garbage Collector

• Parallel Garbage Collector

• CMS Garbage Collector (Concurrent Mark & Sweep)

• G1 Garbage Collector

Each of these four types has its own advantages and disadvantages. Most importantly, we the

programmers can choose the type of garbage collector to be used by the JVM. We can choose them by

passing the choice as JVM argument

https://javapapers.com/java/types-of-java-garbage-collectors/#serial-garbage-collector
https://javapapers.com/java/types-of-java-garbage-collectors/#parallel-garbage-collector
https://javapapers.com/java/types-of-java-garbage-collectors/#cms-garbage-collector
https://javapapers.com/java/types-of-java-garbage-collectors/#g1-garbage-collector

89 | P A G E Satya Kaveti

1. Serial Garbage Collector

• It is designed for the single-threaded environments.

• It uses just a single thread for garbage collection.

• It freezes(stops) all the application threads while performing garbage collection.

• it may not be suitable for a server environment.

• It is best suited for simple command-line programs.

Turn on the -XX:+UseSerialGC JVM argument to use the serial garbage collector.

2. Parallel Garbage Collector

• It is the default garbage collector of the JVM.

• It uses multiple threads for garbage collection.

• Similar to serial garbage collector this also freezes(stops) all the application threads while

performing garbage collection.

3. CMS Garbage Collector

Concurrent Mark & Sweep (CMS) garbage collector uses multiple threads to scan the heap memory

and mark instances which are eligible for garbage collection and then sweep the marked instances.

Turn on the XX:+USeParNewGC JVM argument to use the CMS garbage collector.

4. G1 Garbage Collector

• G1 garbage collector is used if we have a large (more than 4GB) heap space.

• It divides the heap into equal-sized (usually 1MB to 32MB) regions & will prioritize them.

• It performs the parallel garbage collection on that region based on the priority.

G1 Heap Structure

The heap is one memory area split into many fixed sized regions. Region size is chosen by the JVM at

startup. The JVM generally targets around 2000 regions varying in size from 1 to 32Mb.These regions are

mapped into logical representations of Eden, Survivor, and old generation spaces.

Live objects are evacuated (i.e., copied or moved) from one region to another.

Regions are designed to be collected in parallel with or without stopping all other application threads.

90 | P A G E Satya Kaveti

As shown regions can be allocated into Eden, survivor, and old generation regions. In addition, there is

a fourth type of object known as Humongous regions. These regions are designed to hold objects that are

50% the size of a standard region or larger. They are stored as a set of contiguous regions. Finally, the last

type of regions would be the unused areas of the heap.

1.Young Generation in G1

1.The heap is split into approximately 2000 regions. Minimum size is 1Mb and maximum size is 32Mb.

Blue regions hold old generation objects and green regions hold young generation objects.

2.Live objects are evacuated (i.e., copied or moved) to one or more survivor regions. If the aging threshold

is met, some of the objects are promoted to old generation regions.

3.Live objects have been evacuated to survivor regions or to old generation regions.

Recently promoted objects are shown in dark blue. Survivor regions in green.

In summary, the following can be said about the young generation in G1:

o The heap is a single memory space split into regions.

o Young generation memory is composed of a set of non-contiguous regions. This makes it

easy to resize when needed.

o Young generation garbage collections, or young GCs, are stop the world events. All

application threads are stopped for the operation.

o The young GC is done in parallel using multiple threads.

o Live objects are copied to new survivor or old generation regions.

Old Generation Collection with G1

Like the CMS collector, the G1 collector is designed to be a low pause collector for old generation objects.

The following table describes the G1 collection phases on old generation.

G1 Collection Phases - Concurrent Marking Cycle Phases

The G1 collector performs the following phases on the old generation of the heap. Note that some phases

are part of a young generation collection.

91 | P A G E Satya Kaveti

Phase Description

(1) Initial Mark

(Stop the World Event)

This is a stop the world event. With G1, it is piggybacked on a

normal young GC. Mark survivor regions (root regions) which may

have references to objects in old generation.

(2) Root Region Scanning Scan survivor regions for references into the old generation. This

happens while the application continues to run. The phase must be

completed before a young GC can occur.

(3) Concurrent Marking Find live objects over the entire heap. This happens while the

application is running. This phase can be interrupted by young

generation garbage collections.

(4) Remark

(Stop the World Event)

Completes the marking of live object in the heap. Uses an algorithm

called snapshot-at-the-beginning (SATB) which is much faster than

what was used in the CMS collector.

(5) Cleanup

(Stop the World Event and

Concurrent)

o Performs accounting on live objects and completely

free regions. (Stop the world)

o Scrubs the Remembered Sets. (Stop the world)

o Reset the empty regions and return them to the

free list. (Concurrent)

(*) Copying

(Stop the World Event)

These are the stop the world pauses to evacuate or copy live

objects to new unused regions. This can be done with young

generation regions which are logged as [GC pause (young)]. Or

both young and old generation regions which are logged as [GC

Pause (mixed)].

G1 Old Generation Collection Step by Step

With the phases defined, let's look at how they interact with the old generation in the G1 collector.

Initial Marking Phase

Initial marking of live object is piggybacked on a young generation garbage collection. In the logs this is

noted as GC pause (young)(initial-mark).

92 | P A G E Satya Kaveti

Concurrent Marking Phase

If empty regions are found (as denoted by the "X"), they are removed immediately in the Remark phase.

Also, "accounting" information that determines liveness is calculated.

Remark Phase

Empty regions are removed and reclaimed. Region liveness is now calculated for all regions.

Copying/Cleanup Phase

G1 selects the regions with the lowest "liveness", those regions which can be collected the fastest. Then

those regions are collected at the same time as a young GC. This is denoted in the logs as [GC pause

(mixed)]. So both young and old generations are collected at the same time.

After Copying/Cleanup Phase

The regions selected have been collected and compacted into the dark blue region and the dark green

region shown in the diagram.

93 | P A G E Satya Kaveti

Summary of Old Generation GC

In summary, there are a few key points we can make about the G1 garbage collection on the old

generation.

o Concurrent Marking Phase

▪ Liveness information is calculated concurrently while the application is running.

▪ This liveness information identifies which regions will be best to reclaim during an

evacuation pause.

▪ There is no sweeping phase like in CMS.

o Remark Phase

▪ Uses the Snapshot-at-the-Beginning (SATB) algorithm which is much faster then

what was used with CMS.

▪ Completely empty regions are reclaimed.

o Copying/Cleanup Phase

▪ Young generation and old generation are reclaimed at the same time.

▪ Old generation regions are selected based on their liveness.

Java 8 Improvement

Turn on the -XX:+UseStringDeduplication JVM argument while using G1 garbage collector. This

optimizes the heap memory by removing duplicate String values to a single char[] array. This option is

introduced in Java 8 u 20.

Given all the above four types of Java garbage collectors, which one to use depends on the application

scenario, hardware available and the throughput requirements.

Garbage Collection JVM Options

Type of Garbage Collector to run

Option Description

-XX:+UseSerialGC Serial Garbage Collector

-XX:+UseParallelGC Parallel Garbage Collector

-XX:+UseConcMarkSweepGC CMS Garbage Collector

-XX:ParallelCMSThreads= CMS Collector – number of threads to use

-XX:+UseG1GC G1 Garbage Collector

https://javapapers.com/java/java-8-features/

94 | P A G E Satya Kaveti

GC Optimization Options

Option Description

-Xms Initial heap memory size

-Xmx Maximum heap memory size

-Xmn Size of Young Generation

-XX:PermSize Initial Permanent Generation size

-XX:MaxPermSize Maximum Permanent Generation size

Java Reflection API (java.lang.Class)

Reflection is commonly used by programs which require the ability to examine or modify the runtime

behavior of applications running in the Java virtual machine

Where it is used

• IDE (Integrated Development Environment) e.g. Eclipse, MyEclipse, NetBeans etc.

• Debugger

• Test Tools etc

1. Java.lang.Class

The java.lang.Class class performs mainly two tasks:

• Provides methods to get the metadata of a class at run time.

• Provides methods to examine and change the run time behavior of a class.

Method Description

public String getName() returns the class name

public static Class forName(String className)

throws ClassNotFoundException

Loads the class and returns the reference of Class class.

public Object newInstance()throws

InstantiationException,IllegalAccessException

Creates new instance.

public boolean isInterface() Checks if it is interface.

public boolean isArray() Checks if it is array.

public boolean isPrimitive() Checks if it is primitive.

public Class getSuperclass() Returns the superclass class reference.

public Field[] getDeclaredFields() Returns the total number of fields of this class.

public Method[] getDeclaredMethods() Returns the total number of methods of this class.

public Constructor[] getDeclaredConstructors() Returns the total number of constructors of this class.

public Method getDeclaredMethod(String

name,Class[] parameterTypes)

Returns the method class instance.

95 | P A G E Satya Kaveti

Interview Questions

Can a top-level class be private or protected?

No - Top level classes in java can’t be private or protected, but inner classes in java can. The reason for

not making a top-level class as private is very obvious, because nobody can see a private class and thus,

they cannot use it.

What Happens if we compile Empty java file?

Compiles but Runtime Error.

Is it possible to make array volatile in Java?

Yes, it is possible to make an array volatile in Java, but only the reference, which is pointing to an array, by

reassigning it.

What is a.hashCode() used for? How is it related to a.equals(b)?

Hashcode is derived from memory location. According to the Java specification, two objects which are

identical to each other using equals() method needs to have the same hash code

Explain Liskov Substitution Principle.

According to the Liskov Substitution Principle, methods or functions which use super class type must be

able to work with object of subclass without issues. Co-Variant return types are implemented based on

this principle.

What is a compile time constant in Java? What is the risk of using it?

public static final variables are also known as the compile time constants, the public is optional

there. They are substituted with actual values at compile time because compiler recognizes their

value up-front, and also recognize that it cannot be altered during runtime.

One of the issues is that if you choose to use a public static final variable from in-house or a third-

party library is, and their value changed later, then your client will still be using the old value even after

you deploy a new version of JARs.

What is double checked locking in Singleton?

Singleton means we can create only one instance of that class

Rules:

• Create Singleton class Object make it as private

• Create private constructor

• Every Singleton class contains at least one factory method

class Student {
 private static Student st;
 private Student() {
 System.out.println("OBJECET Created FIRST TIME");
 }
 public static Student getObject() {
 if (st == null) {
 st = new Student();

96 | P A G E Satya Kaveti

 } else {
 System.out.println("OBJECET ALREDAY CREATED");
 }
 return st;
 }
}
public class Singleton {
 public static void main(String[] args) {
 Student s1 = Student.getObject();
 Student s2 = Student.getObject();
 System.out.println(s1.hashCode());
 System.out.println(s2.hashCode());
 }
}

Double checked locking in Singleton means, at any cost only one instance is created in multi-threaded

environment.In this case at null checking make Block as Synchronized.
public static Singleton getInstanceDC() {
 if (_instance == null) { // Single Checked
 synchronized (Singleton.class) {
 if (_instance == null) { // Double checked
 _instance = new Singleton();
 }
 }
 }
 return _instance;
}

When to use volatile variable in Java?

• Volatile keyword is used with only variable in Java

• it guarantees that value of volatile variable will always be read from main memory and not from

Thread's local cache.

• So, we can use volatile to achieve synchronization because it’s guaranteed that all reader thread will

see updated value of volatile variable once write operation completed

Difference between static and dynamic binding in Java? (detailed answer)

static binding is related to overloaded method and dynamic binding is related to overridden

method. Method like private, final and static are resolved using static binding at compile time but virtual

methods which can be overridden are resolved using dynamic binding at runtime.

Which design pattern have you used in your production code?

• Dependency injection -in Spring

• Factory pattern - Connection Object

• Adapter Design pattern - DAO Interface Implementations

• Singleton - in Spring

• Template Design Pattren - JDBCTemplate, HibernateTemplate

Decorator design pattern is used to modify the functionality of an object at runtime.

How to create an instance of any class without using new keyword

Using newInstance() method of Class class

Class c = Class.forName("StudentBo");
StudentBo bo = (StudentBo) c.newInstance();

Using clone() of java.lang.Object

NewClass obj = new NewClass();
NewClass obj2 = (NewClass) obj.clone();

http://java67.blogspot.sg/2014/02/static-vs-dynamic-binding-in-java.html
https://www.journaldev.com/1827/java-design-patterns-example-tutorial

97 | P A G E Satya Kaveti

7. java.io
For dealing with input & Output Operations in java we have java.io.* package

In java we will write two types of programs

1. volatile programs: whose result are stored in main Memory (RAM), Temporally (Ex. Console

Applications)

2. Non-Volatile programs: whose results are saved permanently in secondary memory like Drives,

Hard disks, Databases & files.

Stream: flow of data/bites/bytes from source to destination

We have following types of streams to handle IO operations.

1. Byte Streams: perform input and output of 8-bit bytes. (FileInputStream & FileOutputStream)

2. Character Streams: I/O of character data, automatically handling translation to and from the local

character set (FileReader and FileWriter)

3. Buffered Streams: Above are unbuffered I/O. This means each read or write request is handled

directly by the underlying OS. Buffered input streams read data from a memory area known as a

buffer; the native input API is called only when the buffer is empty. Similarly, buffered output streams

write data to a buffer, and the native output API is called only when the buffer is full

(BufferedInputStream and BufferedOutputStream)

4. Data Streams: handle I/O of primitive data type and String values. (DataInputStream &

DataOutputStream.)

5. Object Streams: handle binary I/O of objects. (ObjectInputStream and ObjectOutputStream)

98 | P A G E Satya Kaveti

InputStream, OutputStream methods can be used by all their child classes for performing IO operations

1. InputStream: read Data from File/Source

• public int read();

• public int length(); // total size of the file

• public int available(); // available number of bytes only

• public void close();

2.OutputStream: Write data to file/Destination

• public void write (int);

• public int length ();

• public void available ();

• public void close ();
In java End of file (EOF) is indicated by -1

Byte Streams

• Data transfer is one byte at a time from source to destination

• used to read byte-oriented data for example to read image, audio, video etc.

1.FileInputStream is meant for reading streams of raw bytes such as image data. For reading streams of

characters, consider using FileReader. Below are the constructors to use FileInputStream

Constructors Methods

FileInputStream(File file)

FileInputStream(String FilePath)

Int read(byte b[])

Int read(byte[] b, int off, int len)

2. FileOutputStream

Constructors Methods

FileOutputStream(File file)

FileOutputStream(String filepath)

FileOutputStream(File file, boolean append)

//true ➔append, false➔ overwrite

FileOutputStream(String name, boolean append) name.

void write(byte b[])

void write(byte[] b, int off, int len)

//only byte type is allowed.

(Sure checked)

99 | P A G E Satya Kaveti

used for reading/writing data from/to Binary files like image, videos, xls, docs.

public class ByteStreams {
 public static void main(String[] args) throws IOException {
 String filepath = "E:\\users\\Kaveti_s\\Desktop\\Books\\tmp.txt";

 FileOutputStream outputStream = new FileOutputStream(filepath);
 for (int i = 0; i < 10; i++) {
 outputStream.write(i);//using write(int) of OutputStream Inteface
 }

 FileInputStream inputStream = new FileInputStream(filepath);
 int i;
 while ((i = inputStream.read()) != -1) {//read() returns int
 System.out.println("I : " + i);
 }
 }
}

I : 0,I : 1,I : 2,I : 3,I : 4,I : 5,I : 6,I : 7,I : 8,I : 9

If we open tmp.txt , the data in the form of bytes. That means we can’t read that data. For above example

the file data is

Character Streams

Character stream I/O automatically translates this internal format to and from the local character set. here

the data is read by character by character

1. FileReader is meant for reading streams of characters

2. FileWriter is meant for writing streams of characters

Here Methods & Constructors are Similar to Byte Stream, but instead of byte they use char data used

for reading/writing data from/to Files by character encoding.

public class CharacterStreams {
 public static void main(String[] args) throws IOException {
 String filepath = "E:\\users\\Kaveti_s\\Desktop\\Books\\tmp.txt";
 char[] ch ={ 'a', 'b', 'c', 'd', 'e' };
 FileWriter w = new FileWriter(filepath);
 w.write(ch); //accepts char type only
 w.close();

 FileReader r= new FileReader(filepath);
 int i;
 while ((i = r.read()) != -1) {
 System.out.println(i+":"+(char)i);
 }
 }
}

97:a 98:b 99:c 100:d 101:e

Here we can read file data. Data stored in the file is

100 | P A G E Satya Kaveti

Buffered Streams

• Buffering can speed up IO quite a bit. Rather than read one byte at a time from the network or

disk, the BufferedInputStream reads a larger block at a time into an internal buffer.

• When you read a byte from the BufferedInputStream you are therefore reading it from its

internal buffer.

• When the buffer is fully read, the BufferedInputStream reads another larger block of data into

the buffer.

• This is typically much faster than reading a single byte at a time from an InputStream,

especially for disk access and larger data amounts.

To convert an unbuffered stream into a buffered stream, we need to pass the unbuffered stream object to

the constructor for a buffered stream class

inputStream = new BufferedReader(new FileReader("xanadu.txt"));
outputStream = new BufferedWriter(new FileWriter("characteroutput.txt"));

1. BufferedInputStream:

BufferedInputStream class is used for reducing number of physical read operations. When we

create an object of BufferedInputStream, we get a temporary memory space whose

default size is 1024 bytes, and it can be increased by multiple of 2.

2.BufferedOutputStream:

BufferedOutputStream class is used for reducing number of physical write operations. when

we create an object of BufferedOutputStream, we get a temporary memory space whose

default size is 1024 bytes, and it can be increased by multiple of 2.

Constructors Methods

BufferedInputStream(InputStream is)

BufferedInputStream(InputStream is, int bufsize)

BufferedOutputStream(OutputStream os)

BufferedOutputStream(OutputStream os, int bufsize)

Int read(byte b[])

Int read(byte[] b, int off, int len)

void write(byte b[])

void write(byte[] b, int off, int len)

//only byte type is allowed. (Sure checked)

used for reading/writing data from/to Files.

public class BufferedStreams {
 public static void main(String[] args) throws IOException {
 String filepath = "E:\\users\\Kaveti_s\\Desktop\\Books\\sl.txt";

// 1. Create Stream Object
 FileOutputStream fos = new FileOutputStream(filepath);

// 2. pass Stream object to BufferStream constructor
 BufferedOutputStream bos = new BufferedOutputStream(fos);
 String s = "SmlCodes.com -Programmimg Simplified";
 byte[] b = s.getBytes();
 bos.write(b);
 bos.flush();
 // 1.Create Stream Object
 FileInputStream fis = new FileInputStream(filepath);

101 | P A G E Satya Kaveti

// 2.pass Stream object to BufferStream constructor

 BufferedInputStream bis = new BufferedInputStream(fis);
 int i;
 while((i=bis.read())!=-1){
 System.out.println((char)i);
 }
 }
}

Data Streams

In Previous InputStream allowed only int type, Byte Stream allowed only byte[] & CharacterStream

allowed only char[] for writing data.

To work with Other Datatypes, Data streams introduced to support binary I/O of primitive data type

values (boolean, char, byte, short, int, long, float, and double) and String values. All data streams

implement either the DataInput interface or the DataOutput interface

1. DataInputStream: Used for read primitive Java data types from input stream. (readXXX() method)

2. DataOutputStram: Used for write primitive Java data types to Output stream. (writeXXX() method)

here XXX = primitive data types

Constructors Methods

DataInputStream (InputStream is)

DataOutputStream (OutputStream os)

Int read(byte b[])

Int read(byte[] b, int off, int len)

Byte readByte()

Int readInt()

Char readchar()

void write(byte b[])

void write(byte[] b, int off, int len)

void writeByte(byte b)

void writeInt(int i)

public class DataStream {
 public static void main(String[] args) throws Exception {
 DataOutputStream dos = new DataOutputStream(new FileOutputStream("sml.bin"));
 dos.writeInt(10);
 dos.writeUTF("Satya");

 DataInputStream dis = new DataInputStream(new FileInputStream("sml.bin"));
 System.out.println("Int : " + dis.readInt());
 System.out.println("String : " + dis.readUTF());
 }
}

Int: 10
String: Satya

102 | P A G E Satya Kaveti

Object Streams

Just as data streams support I/O of primitive data types, object streams support I/O of objects. Here we

must know about Serialization.

ObjectOutputStream(OutputStream out)

void writeObject(Object obj)

ObjectInputStream(InputStream in)

Object readObject()

1.Serialization
Serialization is the process of saving the state of the object permanently in the form of a file/byte

stream. To develop serialization program, follow below steps

1. Choose the appropriate class name whose object is participating in serialization.

2. This class must implement java.io.Serializable (this interface does not contain any abstract

methods and such type of interface is known as marker or tagged interface)

3. Choose data members, writer setters & getters

4. Choose Serializable subclass

5. Choose the file name and open it into write mode with the help of FileOutputStream class

6. Pass OutputStream object to ObjectOutputStream(out) constructor to write object data at a time

7. use oos.writeObject(student) method to write Student Object data.

class Student implements Serializable {
 // Exception in thread "main" java.io.NotSerializableException: io.Student if it won’t implement
Serializable
 private int sno;
 private String name;
 private String addr;
 //Setters & getters setName,SetAddr methods…
}

public class Serialization {
public static void main(String[] args) throws Exception {
 Student student = new Student();
 student.setSno(101);
 student.setName("Satya Kaveti");
 student.setAddr("VIJAYAWADA");

 FileOutputStream fos = new FileOutputStream("student.txt");
 ObjectOutputStream oos = new ObjectOutputStream(fos);
 oos.writeObject(student);
}
}
//data saved in student.txt
¬í sr
io.StudentÓÞ®(¦°¦ I snoL
addrt Ljava/lang/String;L
nameq ~ xp et
VIJAYAWADAt

103 | P A G E Satya Kaveti

2.Deserialization
De-serialization is a process of retrieve the data from the file in the form of object.

1. Choose the file name and open it into read mode with the help of FileInputStream class

2. Pass InputStream object to ObjectInputStream(in) constructor to read object data at a time

3. use ois.readObject() method to get Student Object

public class Deserialization {
 public static void main(String[] args) throws Exception{
 FileInputStream fis = new FileInputStream("student.txt");
 ObjectInputStream ois = new ObjectInputStream(fis);
 Student st = (Student)ois.readObject();
 System.out.println(st.getSno());
 System.out.println(st.getName());
 System.out.println(st.getAddr());
 }
}
101
Satya Kaveti
VIJAYAWADA

If we use above process to implement serialization, all the data members will participate in Sterilization

process. If you want to use selected data members for serialization use Transient keyword.

Transient Keyword
To avoid the variable from the serialization process, make that variable declaration as transient i.e.,

transient variables never participate in serialization process. Default values will be initialized for

transient variables.

class Student implements Serializable {
 private transient int sno;
 private transient String name;
 private String addr;
}

public class TransientExample {
 public static void main(String[] args) throws Exception {
 Student student = new Student();
 student.setSno(101);
 student.setName("Satya Kaveti");
 student.setAddr("VIJAYAWADA");

 FileOutputStream fos = new FileOutputStream("student.txt");
 ObjectOutputStream oos = new ObjectOutputStream(fos);
 oos.writeObject(student);

 FileInputStream fis = new FileInputStream("student.txt");
 ObjectInputStream ois = new ObjectInputStream(fis);
 Student st = (Student)ois.readObject();
 System.out.println(st.getSno());
 System.out.println(st.getName());
 System.out.println(st.getAddr());
 }
}

0
null
VIJAYAWADA

104 | P A G E Satya Kaveti

3. Externalization

The default serialize object is heavy weight & having lots of attributes and properties, that you do want

to serialize for any reason (e.g. they always been assigned default values even if we use transient

keyword), you get heavy object to process and send more bytes over network which may be costly on

some cases.

To customize your serialization mechanism, we can use Externalization. Externalizable interface

extends Serializable interface. If you implement this interface, then you need to override following

methods with the fields which you want to serialize.

public void readExternal(ObjectInput arg0) throws IOException,
public void writeExternal(ObjectOutput arg0) throws IOException

Example: I’m a Student , I don’t want to save my GF data.

class Student implements Externalizable {

 private int sno;
 private String name;
 // I dont want save my GF data
 private String girlFriend;

// getters & setters

 public Student(int sno, String name) {
 this.sno = sno;
 this.name = name;
 }

 @Override
 public void readExternal(ObjectInput input) throws IOException, ClassNotFoundException {
 sno = input.readInt();
 name = input.readUTF();// String
 }

 @Override
 public void writeExternal(ObjectOutput output) throws IOException {
 output.writeInt(sno);
 output.writeUTF(name);
 }

 @Override
 public String toString() {
 return "Student [sno=" + sno + ", name=" + name + ", girlFriend=" + girlFriend + "]";
 }

}

public class Test {
 public static void main(String args[]) throws Exception {
 // Writing data
 FileOutputStream fos = new FileOutputStream("student.txt");
 ObjectOutputStream oos = new ObjectOutputStream(fos);
 oos.writeObject(new Student(101, "Satya"));

 // Reading data
 FileInputStream fis = new FileInputStream("student.txt");
 ObjectInputStream ois = new ObjectInputStream(fis);
 Student s = (Student) ois.readObject();
 System.out.println(s.toString());
 }
}
Student [sno=101, name=Satya, girlFriend=null]

https://howtodoinjava.com/java/serialization/java-externalizable-example/

https://howtodoinjava.com/java/serialization/java-externalizable-example/

105 | P A G E Satya Kaveti

StreamTokenizer : StreamTokenizer class (java.io.StreamTokenizer) can tokenize the characters read

from a Reader into tokens. For instance, in the string "Mary had a little lamb" each word is a separate

token

StreamTokenizer streamTokenizer = new StreamTokenizer(
 new StringReader("Mary had 1 little lamb..."));

while(streamTokenizer.nextToken() != StreamTokenizer.TT_EOF){

 if(streamTokenizer.ttype == StreamTokenizer.TT_WORD) {
 System.out.println(streamTokenizer.sval);
 } else if(streamTokenizer.ttype == StreamTokenizer.TT_NUMBER) {
 System.out.println(streamTokenizer.nval);
 } else if(streamTokenizer.ttype == StreamTokenizer.TT_EOL) {
 System.out.println();
 }
}
streamTokenizer.close();

printf and format Methods

The java.io package includes a PrintStream class that has two formatting methods. format and printf

System.out.format("The value of " + "the float variable is " +
 "%f, while the value of the " + "integer variable is %d, " +
 "and the string is %s", floatVar, intVar, stringVar);

Java NIO(Non-blocking I/O) -1.4

The java.nio.file provide support for file I/O and for accessing the default file system.

1) IO streams versus NIO blocks

• NIO provides high-speed, block-oriented I/O. original I/O deals with data in streams, whereas

NIO deals with data in blocks.

• A block-oriented I/O system deals with data in blocks. Each operation produces or consumes a

block of data in one step. Processing data by the block can be much faster than processing it by

the (streamed) byte

2) Synchronous vs. Asynchronous IO

• Java IO’s various streams are blocking or synchronous. That means, when a thread invokes a

read() or write(), that thread is blocked until there is some data to read, or the data is fully written.

• In asynchronous IO, a thread can request that some data be written to a channel, but not wait for

it to be fully written. The thread can then go on and do something else in the meantime. Usually,

these threads spend their idle time on when not blocked in IO calls, is usually performing IO on

other channels in the meantime. That is, a single thread can now manage multiple channels of

input and output

public class ReadFileWithFixedSizeBuffer
{
 public static void main(String[] args) throws IOException

106 | P A G E Satya Kaveti

 {
 RandomAccessFile aFile = new RandomAccessFile"test.txt", "r");
 FileChannel inChannel = aFile.getChannel();

ByteBuffer buffer = ByteBuffer.allocate(1024);
 while(inChannel.read(buffer) > 0)
 {
 buffer.flip();
 for (int i = 0; i < buffer.limit(); i++)
 {
 System.out.print((char) buffer.get());
 }
 buffer.clear(); // do something with the data and clear/compact it.
 }

inChannel.close();
 aFile.close();
 }
}

IO NIO

It is based on the Blocking I/O operation It is based on the Non-blocking I/O operation

It is Stream-oriented It is Buffer-oriented

Channels are not available Channels are available for Non-blocking I/O operation

Selectors are not available Selectors are available for Non-blocking I/O operation

Blocking I/O

Blocking IO wait for the data to be write or read before returning. Java IO's various streams are blocking. It

means when the thread invoke a write() or read(), then the thread is blocked until there is some data

available for read, or the data is fully written.

Non-blocking I/O

Non-blocking IO does not wait for the data to be read or write before returning. Java NIO non- blocking

mode allows the thread to request writing data to a channel, but not wait for it to be fully written. The

thread is allowed to go on and do something else in a mean time

107 | P A G E Satya Kaveti

8.Threads

Introduction to Multi-threading

If a program contains multiple flow of controls for achieving concurrent execution, then that program

is known as multi-threaded program.

The languages like C, C++ comes under single threaded modeling languages, since there exists single

flow of controls whereas the languages like JAVA, .NET are treated as multi-threaded modeling

languages, since there is a possibility of creating multiple flow of controls

When we write any JAVA program there exist two threads, they are

1. Fore ground threads (main Thread) are those which are executing user defined sub-

programs. There is a possibility of creating ‘n’ number of fore ground threads

2. Background threads are those which are monitoring the status of fore ground thread. And

always there exist single background thread.

In information technology we can develop two types of applications. They are process based

applications and thread-based applications.

Context Switch

1.Context Switch in Process

Single flow of Execution is process. Each process has Process Control Block (PCB), the state of the process

is represented in PCB by the operating system.

Whenever CPU want to execute another process it will save the State of current process in PCB (Process

Control Block) with their PID and loads the new process to execute.

Here Context Switch time is very high because Process are running two different address spaces.

108 | P A G E Satya Kaveti

2.Control Switch in Threads

A thread is a sequential execution stream within a process. This means that a single process may be

broken up into multiple threads. Each thread has its own Program Counter, registers, and stack, but

they all share the same address space within the process.

When we switch between two threads all threads share the same address space cost of switching between

threads is much smaller than the cost of switching between processes.

 Process Based Applications Thread Based Applications

1. Exist single flow of control.

2. All C, C++ applications comes under it.

3. Context switch is more.

4. Each process have its own address in memory

i.e. each process allocates separate memory area.

5. These are treated as heavy weight components.

6. In this we can achieve only sequential execution

and they are not recommending for developing

internet applications.

1. Exist Multiple flow of controls.

2. All JAVA, .NET applications come under it.

3. Context switch is very less.

4. Threads share the same address space

5. These are treated as light weight components.

6. In thread-based applications we can achieve both

sequential and concurrent execution and they are always

recommended for developing internet applications.

What is Thread

A thread is a lightweight sub process, a smallest unit of processing. It is a separate path of execution.

Threads are independent, shares a common memory area. if there occurs exception in one thread, it

doesn't affect other threads.

As shown in the figure, thread is executed inside the

process. There is context-switching between the threads.

There can be multiple processes inside the OS and one

process can have multiple threads.

109 | P A G E Satya Kaveti

Thread Life Cycles (Thread States)

See below picture which compares Interview process & Thread Execution process.

Interview Process Thread execution process

1.going to interview

2.Seated, waiting for your call

3.giving interview

4.wating for next round

5.interview completed

1.Thread is created & is about to enter into main memory

2.Space is allocated, waiting for CPU

3.Thread is under control of CPU

4.waiting for another thread/wait/sleep

5.interview completed

Based on the process of execution of thread, people said there are 5 states of a thread

1. New: Thread is created and about to enter into main memory. i.e., New Thread Object is created but

before the invocation of start() method.

2. Ready/Runnable: thread memory space allocated, and it is waiting for CPU for executing. i.e., after

invocation of start() method – before execution of run() , but the thread scheduler has not selected

3. Running: thread is under the control of CPU. i.e., thread scheduler has selected (run() executing).

4. Waiting: This is the state when the thread is still alive, but it is currently not eligible to run. Thread is

waiting because of the following factors:

110 | P A G E Satya Kaveti

• For the repeating CPU burst time of the thread

• Make the thread to sleep for some specified amount of time.

• Make the thread to suspend.

• Make the thread to wait for a period of time.

• Make the thread to wait without specifying waiting time.

5. Terminated: thread has completed its total execution. i.e., Exit form run() method

We have two ways of creating Thread,

• by extending java.lang.Thread class

• By implementing java.lang.Runnable interface.

java.lang.Thread class

Creating a flow of control in Java is nothing but creating an object of java.lang.Thread class.

An object of Thread class can be created in three ways. They are:

• Directly Thread t=new Thread ();

• Using factory method Thread t1=Thread.currentThread();

• Using sub-class that extends Thread class

public class Thread extends Object implements Runnable

Constructors Usage

Thread()

Thread(String name)

Thread(Runnable r)

Thread(Runnable r, String name)

Creates new Thread, whose default thread name is Thread-0

Creates new Thread, with user defined thread name

Used for converting Runnable Object to Thread Object for accessing

start() method with default thread name

Used for converting Runnable Object to Thread Object with user-defined

thread name

1. void start () : Used for making the Thread to start to execute the thread logic. The method start is

internally calling the method run().

2. void run(): Thread logic must be defined only in run() method. When the thread is started, the JVM

looks for the appropriate run() method for executing the logic of the thread. Thread class is a concrete

class, and it contains all defined methods, and all these methods are final except run() method.

run() method is by default contains a definition with null body. Since we are providing the logic for

the thread in run() method. Hence it must be overridden by extending Thread class into our own class.

111 | P A G E Satya Kaveti

3. void suspend() - This method is used for suspending the thread from current execution of thread.

When the thread is suspended, it sends to waiting state by keeping the temporary results in Process

control block (PCB) & Thread control block (TCB). (deprecated)

4. void resume() -resumes suspend() Thread. Resumed to start executing from where it left out

previously by retrieving the previous result from PCB (deprecated)

5. void interrupt() -Interrupts Sleeping/Waiting thread

6. void join() -Waits for this thread to die.

7. void join(long mil) -Waits at most given milliseconds for this thread to die

8. void stop() -is used to stop the thread(deprecated).

static void sleep(long ms) - sleeps/temporary block the thread for specified amount of time

static void yield() - pause current thread and allow other threads to execute

static Thread currentThread() - Get currently running thread Object. mainly used in run()

static int activeCount() - Counts the no.of active threads in current thread group& subgroups.

▪ void setName(String name) -set thread's name

▪ String getName() -Returns this thread's name.

▪ long getId() -Returns the identifier of this Thread.

▪ void setDaemon(boolean on) -Marks this thread as either a daemon thread

▪ int getPriority() -Returns this thread's priority.

▪ Boolean isAlive() -Tests if this thread is alive

▪ Boolean isDaemon() -Tests if this thread is a daemon thread.

▪ Thread.State getState() -Returns Current Thread State

▪ ThreadGroup getThreadGroup() -Returns the thread group to which this thread belongs.

1. public static final int MIN_PRIORITY (1);

2. public static final int NORM_PRIORITY (5);

3. public static final int MAX_PRIORITY (10);

The above data members are used for setting the priority to threads are created. By default, whenever a

thread is created whose default priority NORM_PRIORITY

void wait() - waits the current thread until another thread invokes the notify()

void wait(long ms) - waits the current thread until another thread invokes the notify()/specified

amount of time

void notify() -Wakes up a single thread that is waiting on this object's monitor.

void notifyAll() -Wakes up all threads that are waiting on this object's monitor.

112 | P A G E Satya Kaveti

java.lang.Runnable Interface

Runnable interface has only one abstract method run(). Thread class implemented Runnable interface

run() method as null body method

public void run(): is used to perform action for a thread

As said, we can use either of Thread class /Runnable interface to implement threads.

public class ThreadDemo extends Thread {
 @Override
 public void run() {
 System.out.println("Iam Running");
 }
 public static void main(String[] args) {
 ThreadDemo ob = new ThreadDemo();
 ob.start();
 }
}

public class RunnableDemo implements Runnable {
 @Override
 public void run() {
 System.out.println("Iam Running");
 }
 public static void main(String[] args) {
 RunnableDemo r = new RunnableDemo();
 Thread ob = new Thread(r);
 ob.start();
 }
}

By Extending Thread Class By Implementing Runnable Interface

1.write a class extending Thread class

2.write execution logic in run() method

3.Create Object of thread

ThreadDemo ob = new ThreadDemo();

4.call start() method, it internally calls run()

method ob.start();

1.write a class implements Runnable Interface

2.write execution logic in run() method

3.Create Object of implemented thread class & create

Thread Object by passing it

 RunnableDemo r = new RunnableDemo();

 Thread ob = new Thread(r);

4.call start() method, it internally calls run() method

ob.start();

public class ThreadExample extends Thread {
 @Override
 public void run() {
 System.out.println("----- \n Im Run() Running....\n -----");
 }
 public static void main(String[] args) throws InterruptedException {
 ThreadExample th = new ThreadExample();
 System.out.println(th.getState().name());
 th.start();

 System.out.println(th.getState().name());
 System.out.println("getId : " + th.getId());

113 | P A G E Satya Kaveti

 System.out.println("getName : " + th.getName());
 System.out.println("getPriority : " + th.getPriority());
 System.out.println("isAlive : " + th.isAlive());
 System.out.println("isDaemon : " + th.isDaemon());
 System.out.println("getThreadGroup : " + th.getThreadGroup().getName());
 th.setName("SmlCodes-Thread");
 System.out.println("getName : " + th.getName());
 Thread.sleep(2500);//
 System.out.println(th.getState().name());
 }
}
NEW
RUNNABLE
getId : 9
getName : Thread-0
getPriority : 5
isAlive : true
isDaemon : false
getThreadGroup : main
getName : SmlCodes-Thread
 Im Run() Running....

TERMINATED

public class SleepDemo extends Thread {
 public void run() {
 for (int i = 1; i <= 10; i++) {
 System.out.println(i);
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }
 public static void main(String[] args) {
 SleepDemo ob1 = new SleepDemo();
 SleepDemo ob2 = new SleepDemo();
 ob1.start();
 ob2.start();
}
}

 Output
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10
10

If we start run() method directly JVM treats it as a normal method & it does have characteristics like

concurrent execution. In if you see both threads are executing parallel. Here below

example we are calling run() method directly. See the output

public class SleepDemo extends Thread {
 public void run() {
 for (int i = 1; i <= 10; i++) {
 System.out.println(i);
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }
 public static void main(String[] args) {
 SleepDemo ob1 = new SleepDemo();
 SleepDemo ob2 = new SleepDemo();
 ob1.run();
 ob2.run();
 }
}

 Output
1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
10

114 | P A G E Satya Kaveti

public class ThreadDemo extends Thread {
 @Override
 public void run() {
 System.out.println("Iam Running");
 }
 public static void main(String[] args) {
 ThreadDemo ob = new ThreadDemo();
 ob.start();
 ob.start();
 }
}
Exception in thread "main" java.lang.IllegalThreadStateException
 at java.lang.Thread.start(Thread.java:705)
 at threads.ThreadDemo.main(ThreadDemo.java:11)
Iam Running

Interrupting a Thread

An interrupt is an indication to a thread that it should stop what it is doing and do something else. It's up

to the programmer to decide exactly how a thread responds to an interrupt.

If any thread is in sleeping or waiting state (i.e. sleep() or wait()), calling the interrupt() method on the

thread, breaks out the sleeping or waiting state throwing InterruptedException.

public void interrupt() - Inturpting a Thread

To Test the Status

• public boolean isInterrupted() : It is a instance method and tests whether the thread instance on

which the method is invoked is interrupted or not.

• public static boolean interrupted(): It is a Static method, tests whether the CURRENTLY running

thread is interrupted or not

If the thread is not in the sleeping or waiting state, calling the interrupt() method performs normal

behaviour and doesn't interrupt the thread but sets the interrupt flag to true

public class InterruptNormal extends Thread {
 public void run() {
 try {
 Thread.sleep(1000);
 System.out.println("task");
 } catch (InterruptedException e) {
 throw new RuntimeException("Thread interrupted..." + e);//here Error Re-Throwed
 }
 System.out.println("Thread is Running ...");
 }
 public static void main(String args[]) {
 InterruptNormal t1 = new InterruptNormal();
 t1.start();
 try {
 t1.interrupt();
 } catch (Exception e) {
 System.out.println("Exception handled " + e);
 }
 }
}
Exception in thread "Thread-0" java.lang.RuntimeException: Thread
interrupted...java.lang.InterruptedException: sleep interrupted
 at threads.InterruptNormal.run(InterruptNormal.java:9)

above, your are re throwing IntereuptException. So thraed is Inturrpeed & also stops its execution.

115 | P A G E Satya Kaveti

public class InterruptHandled extends Thread {
 public void run() {
 try {
 Thread.sleep(3000);
 System.out.println(" *** Sleep is Still Running ****");
 } catch (InterruptedException e) {
 System.out.println("Thread interrupted..." + e);
 }
 System.out.println("Thread is Running ...");
 }
 public static void main(String args[]) {
 InterruptHandled t1 = new InterruptHandled();
 t1.start();
 try {
 t1.interrupt();
 } catch (Exception e) {
 System.out.println("Exception handled " + e);
 }
 System.out.println("isInterrupted :: "+t1.isInterrupted());
 }
}
Thread interrupted...java.lang.InterruptedException: sleep interrupted
Thread is Running
isInterrupted :: true ...

In above, Exception is handled. It is only interruped sleeping thread.remaining are excuting as normal

If thread is not in sleeping or waiting state, calling the interrupt() method sets the interrupted

flag to true that can be used to stop the thread by the java programmer later.

public class InterruptHandled extends Thread {
 public void run() {
 System.out.println(" *** No Sleep is Here ****");
 System.out.println("Thread is Running ...");
 }

 public static void main(String args[]) {
 InterruptHandled t1 = new InterruptHandled();
 t1.start();
 try {
 t1.interrupt();
 } catch (Exception e) {
 System.out.println("Exception handled " + e);
 }
 System.out.println("isInterrupted :: "+t1.isInterrupted());
 }
}
*** No Sleep is Here ****
Thread is Running ...
isInterrupted :: true

The interrupt mechanism is implemented using an internal flag known as the interrupt status.

Invoking interrupt() sets this flag. When a thread checks for an interrupt by invoking the static

method Thread.interrupted, interrupt status is cleared. The non-static isInterrupted method, which

is used by one thread to query the interrupt status of another, does not change the interrupt status flag.

By convention, any method that exits by throwing an InterruptedException clears interrupt status when

it does so. However, it's always possible that interrupt status will immediately be set again, by another

thread invoking interrupt.

116 | P A G E Satya Kaveti

Joining a Thread (join () method)

java.lang.Thread class provides the join() method which allows one thread to wait until another thread

completes its execution.

1. public void join() throws InterruptedException :Waits for this thread to die.

 It will wait until Thread logic completion & after that next instruction will be execute.

public class JoinExample extends Thread {
 public void run() {
 for (int i = 1; i <= 10; i++) {
 try {
 Thread.sleep(500);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 System.out.println(i);
 }
 }
 public static void main(String[] args) {
 JoinExample t1 = new JoinExample();
 JoinExample t2 = new JoinExample();
 JoinExample t3 = new JoinExample();

 t1.start();
 try {
 t1.join();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 t2.start();
 t3.start();
 }
}

 1
2
3
4
5
6
7
8
9
10
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10
10

t2, t3 threads waits for t1 thread to die. After completion of t1 thread execution t12, t3 are started.

2. public void join(long milliseconds) throws InterruptedException : Waits at most milliseconds

for this thread to die. That means it waits for thread to die in give milliseconds. If it won’t die in give

time treated as normal thread & executes parallel with other threads if any.

If you see in above example t2, t3 threads are waiting for t1 thread to die in 5000 milliseconds. But in given time t1

did not die. So, t2, t3 threads start their execution parallel with t1 thread.

public class JoinExample extends Thread {
 public void run() {
 for (int i = 1; i <= 10; i++) {
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 System.out.println(i);
 }
 }
 public static void main(String[] args) {
 JoinExample t1 = new JoinExample();
 JoinExample t2 = new JoinExample();
 JoinExample t3 = new JoinExample();

 t1.start();
 try {
 t1.join(5000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 t2.start();
 t3.start();
 }
}

 1
2
3
4
5
1
1
6
7
2
2
3
3
8
9
4
4
10
5
5
6
6
7
7
8
8
9
9
10
10

117 | P A G E Satya Kaveti

Thread Priority

Each thread has a priority. Priorities are represented by a number between 1 and 10. In most cases, thread

scheduler schedules the threads according to their priority (known as pre-emptive scheduling). But it

is not guaranteed because it depends on JVM specification that which scheduling it chooses.

1) public static final int MIN_PRIORITY (1);

2) public static final int NORM_PRIORITY (5);

3) public static final int MAX_PRIORITY (10);

public class ThreadPriority extends Thread{
 @Override
 public void run() {
 Thread th= Thread.currentThread();
 System.out.println("Name :"+th.getName() +"\t Priortity:"+th.getPriority());
 }
 public static void main(String[] args) {
 ThreadPriority t1 = new ThreadPriority();
 ThreadPriority t2 = new ThreadPriority();
 ThreadPriority t3 = new ThreadPriority();

 t1.setPriority(MIN_PRIORITY);
 t2.setPriority(NORM_PRIORITY);
 t3.setPriority(MAX_PRIORITY);

 t1.start();
 t2.start();
 t3.start();
 }
}
Name :Thread-2 Priortity:10
Name :Thread-1 Priortity:5
Name :Thread-0 Priortity:1

Even though t1 starts first, it has MIN_PRIORITY so, it executes last that to depends on JVM Specification

Daemon Thread

Daemon thread is a thread that provides services to the user thread. There

are many java daemon threads running automatically e.g. gc, finalizer etc.

JVM terminates these threads automatically.

We can see all daemon threads using JConsole

(C:\ProgramFiles\Java\jdk1.8.0_45\bin\jconsole.exe)

• It provides services to user threads for background supporting

tasks. It has no role in life than to serve user threads.

• Its life depends on user threads.

• It is a low priority thread.

We have two methods to dealing the Demon Threads

1. public void setDaemon(boolean status) : set’s current thread as daemon thread.

2. public boolean isDaemon() : is used to check that current is daemon.

118 | P A G E Satya Kaveti

public class DemonEx extends Thread {
 public void run() {
 Thread th = Thread.currentThread();
 if (th.isDaemon()) {
 System.out.println("DEMON THREAD " + th.getName());
 } else {
 System.out.println("NORMAL THREAD " + th.getName());
 }
 }
 public static void main(String[] args) {
 DemonEx t1 = new DemonEx();
 DemonEx t2 = new DemonEx();

 t1.setDaemon(true);
 t1.start();
 t2.start();
 }
}
DEMON THREAD Thread-0
NORMAL THREAD Thread-1

If you want to make a user thread as Daemon, it must not be started otherwise it will throw

IllegalThreadStateException

public static void main(String[] args) {
 DemonEx t1 = new DemonEx();
 DemonEx t2 = new DemonEx();
 t1.start();
 t1.setDaemon(true);
 t2.start();
 }
Exception in thread "main" java.lang.IllegalThreadStateException
 at java.lang.Thread.setDaemon(Thread.java:1352)
 at threads.DemonEx.main(DemonEx.java:18)

Thread Group

Thread Group is a process of grouping multiple threads into a single object. We can suspend, interrupt &

resume in a single method call.

Constructors

ThreadGroup(String name) : creates a thread group with given name.

ThreadGroup(ThreadGroup parent, String name):creates a thread group with given parent group & name.

Methods
int activeCount() returns no. of threads running in current group.

int activeGroupCount() returns a no. of active group in this thread group.

void destroy() destroys this thread group and all its subgroups.

String getName() returns the name of this group.

ThreadGroup getParent() returns the parent of this group.

void interrupt() interrupts all threads of this group.

void list() Prints information of this group to standard console.

class ThreadEx extends Thread {
 public void run() {
 Thread th = Thread.currentThread();

 System.out.println("Thread Name:"+th.getName()+"Name:"+ th.getThreadGroup());
 }
}

119 | P A G E Satya Kaveti

public class ThreadGroupDemo {
 public static void main(String[] args) throws InterruptedException {
 ThreadGroup tg = new ThreadGroup("SmlCodes Group");
 ThreadEx thread = new ThreadEx();
 // adding thraeds to Theard Group
 Thread t1 = new Thread(tg, thread, "Thread-1");
 t1.start();

 Thread t2 = new Thread(tg, thread, "Thread-2");
 t2.start();

 Thread t3 = new Thread(tg, thread, "Thread-3");
 t3.start();
 tg.list();
 }
}
java.lang.ThreadGroup[name=SmlCodes Group,maxpri=10]
Thread Name: Thread-3 Thread Group Name: java.lang.ThreadGroup[name=SmlCodes Group,maxpri=10]
Thread Name: Thread-1 Thread Group Name: java.lang.ThreadGroup[name=SmlCodes Group,maxpri=10]
Thread Name: Thread-2 Thread Group Name: java.lang.ThreadGroup[name=SmlCodes Group,maxpri=10]
 Thread[Thread-1,5,SmlCodes Group]
 Thread[Thread-2,5,SmlCodes Group]
 Thread[Thread-3,5,SmlCodes Group]

Synchronization

Synchronization is a process of allowing only one thread at a time

Lock: Synchronization is built around an internal entity known as the lock or monitor. Every object has

a lock associated with it. If a thread that needs consistent access to an object's fields must acquire the

object's lock before accessing them, and then release the lock when it's done with them.

class Counter implements Runnable {
 private int count;

public int getCount() {
 return this.count;
 }

public void run() {
 for (int i = 1; i <= 5; i++) {
 waitCounter (i);
 count++;
 }
 }

public void waitCounter(int i) {
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}
public class ThreadSafety {
 public static void main(String[] args) throws InterruptedException {
 Counter c = new Counter();
 Thread t1 = new Thread(c);
 t1.start();
 Thread t2 = new Thread(c);
 t2.start();
 // wait for threads to finish processing
 t1.join();
 t2.join();
 System.out.println("Processing count=" + c.getCount());
 }
}
Processing count=8

120 | P A G E Satya Kaveti

In above example for a single thread Counter we created two child threads t1,t2 and count is a variable

common for those two threads. After completion of thread execution, the counter must be 10. But

here it is displaying output as 8 because two threads are executing parallel on same method

waitCounter(), the result may is overlapped two threads are executing same method at same time.

To resolve these types of problems we use synchronization. We can implement synchronization in 3 ways

1. Synchronized Instance Methods

2. Synchronized Static Methods.

3. Synchronized Blocks

Note: All the Synchronized methods, blocks in the part of class which extends Thread/Runnable

1. Synchronized Instance methods:
If an ordinary instance method is made as synchronized, then the object of the corresponding class

will be locked

 synchronized void waitCounter(int i) {
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

2. Synchronized static method

If an ordinary static method is made it as synchronized then the corresponding class will be locked.
synchronized static void waitCounter(int i) {
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

3. Synchronized block:
When we inherit non-synchronized methods from either base class or interface into the derived class,

we cannot make the inherited method as synchronized. Hence, we must use synchronized blocks

 public void waitCounter(int i) {
 synchronized (this) {
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }

If you use any of above methods the output should be Processing count=10

Inter Thread Communication

If a Thread is synchronized only one thread should be access at a time. To access multiple threads on

synchronized resource there should be some communication between them. Inter-thread communication

or Co-operation is all about allowing synchronized threads to communicate with each other.

121 | P A G E Satya Kaveti

Inter-thread communication is a mechanism in which a thread is paused running in its critical section

and another thread is allowed to enter (or lock) in the same critical section to be executed. It is

implemented by following methods of Object class:

• void wait() - waits the current thread until another thread invokes the notify()

• void wait (long ms) - waits the current thread until another thread invokes the

notify()/specified amount of time

• void notify() -Wakes up a single thread that is waiting on this object's monitor.

• void notifyAll() -Wakes up all threads that are waiting on this object's monitor.

1. What is a Monitor?

In general terms monitor can be considered as a building which contains a special room. The special

room can be occupied by only one customer(thread) at a time. The room usually contains some data and

code.

A monitor is mechanism to control concurrent access to an object.

Thread 1:

public void a()
{
 synchronized(someObject) {
 // do something (1)
 }
}

Thread 2:
public void b()
{
 synchronized(someObject) {
 // do something else (2)
 }
}

This prevents Threads 1 and 2 accessing the monitored (synchronized) section at the same time. One will

start, and monitor will prevent the other from accessing the region before the first one finishes.

122 | P A G E Satya Kaveti

2 Difference between lock and monitor

 Above figure shows the monitor as three rectangles. In the center, a large rectangle contains a single

thread, the monitor’s owner. On the left, a small rectangle contains the entry set. On the right, another

small rectangle contains the wait set.

Lock’s help threads to work independently on shared data without interfering with one another, wait-sets

help threads to cooperate with one another to work together towards a common goal e.g. all waiting

threads will be moved to this wait-set and all will be notified once lock is released. This wait-set helps in

building monitors with additional help of lock (mutex).

123 | P A G E Satya Kaveti

class Customer {
 int amount = 10000;

 synchronized void withdraw(int amount) {
 System.out.println("WITHDRAWING \n****************");
 if (this.amount < amount) {
 System.out.println(" LESS BALANCE !!!!");
 try {
 System.out.println("withdraw() is on wait until deposit() done & notify ");
 wait();
 } catch (Exception e) {
 }
 }
 this.amount -= amount;
 System.out.println(" ******* WITHDRAW COMPLETED **********");
 }

 synchronized void deposit(int amount) {
 System.out.println("\n\n DEPOSITING \n ****************");
 this.amount += amount;
 System.out.println("DEPOSIT COMPLETED ");
 System.out.println("calling nofity on withdraw()");
 notify();
 }
}

public class InterThreadCom {
 public static void main(String args[]) {
 final Customer c = new Customer();
 new Thread() {
 public void run() {
 c.withdraw(15000);
 }
 }.start();
 new Thread() {
 public void run() {
 c.deposit(10000);
 }
 }.start();
 }
}
WITHDRAWING

 LESS BALANCE !!!!
withdraw() is on wait until deposit() done & notify

 DEPOSITING

DEPOSIT COMPLETED
calling nofity on withdraw()
 ******* WITHDRAW COMPLETED **********

3 Difference between wait and sleep
Let's see the important differences between wait and sleep methods.

wait() sleep()

wait() method releases the lock sleep() method doesn't release the lock.

is the method of Object class is the method of Thread class

is the non-static method is the static method

should be notified by notify() or notifyAll() methods after the specified amount of time, sleep is completed.

124 | P A G E Satya Kaveti

Callable Interface

The Callable interface is similar to Runnable, contaings call() method which returns a Value & throws

CheckedException.

public interface Callable<V> {
 V call() throws Exception;
}

public class Demo implements Callable<String>{

 @Override
 public String call() throws Exception {
 return "Hello";
 }

 public static void main(String[] args) throws Exception {
 String msg = new Demo().call();
 System.out.println(msg);
 }
}
Hello

125 | P A G E Satya Kaveti

9. java.util.Concurrency
java.util.concurrent package introduced in version 5.0 with following features

1. Lock objects support locking idioms that simplify many concurrent applications.

2. Executors define a high-level API for launching and managing threads. Executor implementations

provided by java.util.concurrent package provides thread pool management suitable for

large-scale applications.

3. Atomic variables have features that minimize synchronization and help avoid memory

consistency errors.

4. Concurrent collections make it easier to manage large collections of data, and can greatly

reduce the need for synchronization.

5. ThreadLocalRandom (in JDK 7) provides efficient generation of pseudorandom numbers from

multiple threads.

Lock Interface

java.util.concurrent.locks.Lock interface is used to as a thread synchronization mechanism similar to

synchronized blocks.

https://www.youtube.com/watch?v=ahBC69_iyk4&index=13&t=1s&list=PLhfHPmPYPPRk6yMrcbfafFGSbE2EPK_A6

1.In BookMyShow only one thread is allowed to book seat:A10

https://docs.oracle.com/javase/tutorial/essential/concurrency/newlocks.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/executors.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/atomicvars.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/collections.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/threadlocalrandom.html
https://www.youtube.com/watch?v=ahBC69_iyk4&index=13&t=1s&list=PLhfHPmPYPPRk6yMrcbfafFGSbE2EPK_A6

126 | P A G E Satya Kaveti

2.Here Thread-1 get the lock for seat:A10, other threads will wait in waiting queue, until t1 releases the

Lock

3.Once Lock got released, remaining threads will try to get the Lock. Process will continue.

127 | P A G E Satya Kaveti

1.void lock() – To aquire Lock.if lock is already availabale current thread will get that lock.if lock is not

available it waits untill get the lock.it is similar to synchronized keyword.

2.void unlock() – Releases the lock.if we call on thread which is not having lock it will thorws

runtime exception IllegalMonitorStateException

3.boolean tryLock() – To quire lock without waiting.if it aquires lock returns true, if not false & continues

it execution without waiting.In this case thread never goes into waiting state

if(l.tryLock())
{

//perform safe operations
}else{
 //perform alternative operations
}

4.boolean tryLock(long time, TimeUnit unit) – Same as above, but specifying time.TimeUnit is Enum

having values as NANOSECONDS, SECONDS, MINITUES, HOURS, DAYS

if(l.tryLock(1000,TimeUnit.MINITUES)) //waiting for 1000 minutes
{

//perform safe operations
}else{
 //perform alternative operations
}

5. void lockInterruptibly() – Aquires lock if available & returns immdefiatly. Not available it will

wait.while waiting if thread is interruped then thread wont get the lock.

ReentrantLock Class
It is the implementation class of Lock interface & direct child class of Object.Reentrant means A thread

can aquire same lock multiple times without any issue.

In ReentrantLock maintians holdcount variable. when ever we call lock() it increments threads

holdcount++ & when ever thread calls unlock() it decrements holdcount-- value. Lock will realesed

when ever count reaches 0. Below are the benefits by using ReeentrantLock…

1.lock on a resource more than once

ReentrantLock allow threads to enter into lock on a resource more than once. When the thread

first enters into lock, a hold count is set to one. Before unlocking the thread can re-enter into

lock again and every time hold count is incremented by one. For every unlock request, hold count

is decremented by one and when hold count is 0, the resource is unlocked

2.offer a fairness parameter

after a thread unlocks the resource, the lock would go to the thread which has been waiting for

the longest time. This fairness mode is set up by passing true to the constructor of the lock.

Lock lock = new ReentrantLock(true); //Setting Fairness Policy

128 | P A G E Satya Kaveti

It has all the methods which are there in Lock interface, additionally it has following methods.

• getHoldCount(): This method returns the count of the number of locks held on the resource

• isHeldByCurrentThread(): This method returns true if the lock on the resource is held by the

current thread.

public class NormalLock extends Thread {
 static int i = 0;
 Lock lock = new ReentrantLock();

 @Override
 public void run() {
 increment();
 }

 public void increment() {
 try {
 lock.lock();

 i++;
 S.O.P(Thread.currentThread().getName() + " Got Lock: incremented, i=" + i);
 Thread.sleep(3000);

 lock.unlock();

 } catch (InterruptedException e) {
 e.printStackTrace();
 } finally {

 }
 }

 public static void main(String[] args) {

 NormalLock ob = new NormalLock();

 Thread t1 = new Thread(ob, "One");
 Thread t2 = new Thread(ob, "Two");
 Thread t3 = new Thread(ob, "Three");

 t1.start();
 t2.start();
 t3.start();
 }

}
One Got Lock: incremented, i=1
Three Got Lock: incremented, i=2
Two Got Lock: incremented, i=3

Here all the Threads are excuted, because each thread will wait until they get the lock & in above we

haven’t set fairness true, so order of thread excured randomly(1, 3, 2).

If we set fairness is true output is like

Lock lock = new ReentrantLock(true);
One Got Lock: incremented, i=1
Two Got Lock: incremented, i=2
Three Got Lock: incremented, i=3

Note: All the Synchronized methods, blocks, Locks in the part of class which extends Thread/Runnable

Remember, Lock is same as Synchronized block. Opening brace is – lock, closing brace is – unlock.

129 | P A G E Satya Kaveti

public class TryLockDemo extends Thread {
 static int i = 0;
 Lock lock = new ReentrantLock();

 public void run() {
 increment();
 }
 public void increment() {
 try {
 // WAIT FOR 2 Seconds to get the Lock
 if (lock.tryLock(2, TimeUnit.SECONDS)) {
 i++;
 SOP(Thread.currentThread().getName() + " Got Lock: incremented, i=" + i);
 Thread.sleep(3000);
 lock.unlock(); // Unlocks here
 } else {
 SOP(Thread.currentThread().getName() + " Iam doing Something else");
 }

 } catch (InterruptedException e) {
 e.printStackTrace();
 } finally {
 System.out.println("Final i : "+i);
 }
 }
 public static void main(String[] args) {
 TryLockDemo ob = new TryLockDemo();

 Thread t1 = new Thread(ob, "One");
 Thread t2 = new Thread(ob, "Two");
 Thread t3 = new Thread(ob, "Three");

 t1.start();
 t2.start();
 t3.start();
 }
}
Three Got Lock: incremented, i=1
Two Iam doing Something else
One Iam doing Something else
Final i : 1

Here all thraeds trying to getlock, but Three Thread got lock, remaining threads wont wait for lock , they

are executing else block some kind of alternative job without waiting. So final count is 1.

public class HoldCount extends Thread {
 static int i = 1;

 ReentrantLock lock = new ReentrantLock();

 public void run() {
 lock.lock();
 System.out.println("one");

 lock.lock();
 System.out.println("Two");

 System.out.println("HOLD Count : " + lock.getHoldCount());
 lock.unlock();

 System.out.println("isHeldByCurrentThread : " + lock.isHeldByCurrentThread());

 System.out.println("HOLD Count : " + lock.getHoldCount());
 lock.unlock();

 System.out.println("HOLD Count : " + lock.getHoldCount());
 }

130 | P A G E Satya Kaveti

 public static void main(String[] args) {
 HoldCount t = new HoldCount();
 t.setName("BIG-THREAD");
 t.start();
 }
}
one
Two
HOLD Count : 2
isHeldByCurrentThread : true
HOLD Count : 1
HOLD Count : 0

There are few differences between the use of Synchronized block and using Lock API’s

• A synchronized block is fully contained within a method – we can have Lock API’s lock() and

unlock() operation in separate methods.

public class ThreadDemo extends Thread {

 Lock lock = new ReentrantLock();
 public int sum(int a, int b) {
 //Locking in one method

 lock.lock();
 a = 10;
 b = 20;
 return a + b;
 }
 public void show() {
 System.out.println(sum(10, 20));
 //UnLocking in another method

 lock.unlock();
 }
}

• A synchronized block does not support the fairness, any thread can acquire the lock – there is no

preference specified for getting the lock. We can achieve fairness within the Lock APIs by specifying

the fairness property. It makes sure that longest waiting thread is given access to lock.

• A thread gets blocked if it can’t get an access to the synchronized block. The Lock API

provides tryLock() method. The thread acquires lock only if it is available and not held by any

other thread. This reduces blocking time of thread waiting for the lock.

if(l.tryLock())
{//perform safe operations
}else{
 //perform alternative operations
}

• A thread which is in “waiting” for a long time (say hours) to acquire the access to synchronized block,

can’t be interrupted. The Lock API provides a method lockInterruptibly() which can be used to

interrupt the thread when it is waiting for the lock

131 | P A G E Satya Kaveti

ReadWriteLock interface

In addition to Lock interface, we have a ReadWriteLock interface which maintains a pair of locks, one for

read-only operations, and one for the write operation.

ReentrantReadWriteLock class
ReentrantReadWriteLock class is implementation of it

• Lock readLock() – returns the lock that’s used for reading

• Lock writeLock() – returns the lock that’s used for writing. Once lock gain no write & read

allowed.

public class ReadWriteLockDemo implements Runnable {
 ArrayList list = new ArrayList<>();
 ReadWriteLock rwlock = new ReentrantReadWriteLock(true);

 Lock readLock = rwlock.readLock();
 Lock writeLock = rwlock.writeLock();

 public void write() {
 writeLock.lock();
 int ele = 100;
 list.add(ele);
 System.out.println(Thread.currentThread().getName() + " : Write : " + ele);
 try {
 Thread.sleep(5000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 writeLock.unlock();
 }

 public void read() {
 if (readLock.tryLock()) {
 int index = list.size();
 int ele = (int) list.get(index - 1);
 System.out.println(Thread.currentThread().getName() + " : Read : " + ele);
 readLock.lock();
 } else {
 S.O.println(Thread.currentThread().getName() + ": Read Lock Not available");
 }
 }

 @Override
 public void run() {
 String thname = Thread.currentThread().getName();
 if (thname.contains("write")) {
 write();
 } else {
 read();
 }
 }

132 | P A G E Satya Kaveti

 public static void main(String[] args) throws InterruptedException {
 ReadWriteLockDemo ob = new ReadWriteLockDemo();

 new Thread(ob, "write1").start();
 Thread.sleep(2000);

 new Thread(ob, "read1").start();
 Thread.sleep(5000);

 new Thread(ob, "read2").start();
 }
}
write1 : Write : 100
read1: Read Lock Not avaialble
read2 : Read : 100

Conditions

A java.util.concurrent.locks.Condition interface provides a thread ability to suspend its execution,

until the given condition is true.

Condition variables are instance of java.util.concurrent.locks.Condition class, which provides inter

thread communication methods similar to wait, notify and notifyAll e.g. await(), signal() and signalAll().

We can Create Condition object by using ReentrantLock and ReentrantReadWriteLock Which are

implementation classes of Lock interface. You can create condition variable by

calling lock.newCondtion() method

Methods

• await():The current thread suspends its execution until it is signalled or interrupted.

• await(long time, TimeUnit unit) :The current thread suspends its execution until it is signalled,

interrupted, or the specified amount of time elapses.

• awaitNanos(long nanosTimeout) :The current thread suspends its execution until it is

signalled, interrupted, or the specified amount of time elapses.

• awaitUninterruptibly() :The current thread suspends its execution until it is signalled (cannot

be interrupted).

• signal():This method wakes a single thread which is waiting for a longtime on this condition.

• signalAll():This method wakes all threads waiting on this condition.

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Condition.html#await--
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Condition.html#await-long-java.util.concurrent.TimeUnit-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Condition.html#awaitNanos-long-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Condition.html#awaitUninterruptibly--
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Condition.html#signal--
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Condition.html#signalAll--

133 | P A G E Satya Kaveti

if one thread is waiting on a condition by calling condition.await() then once that condition changes,

second thread can call condition.signal() or condition.signalAll() method to notify that its time to

wake-up.

Locks are used for Sychronization.We will use Lock and Condition variables for solving classic Producer

Consumer problem.

In the producer-consumer problem, there is one Producer that is producing something and there is one

Consumer that is consuming the products produced by the Producer. The producers and consumers share

the same memory buffer that is of fixed-size.The following are the problems that might occur in the

Producer-Consumer:

• The producer should produce data only when the buffer is not full. If the buffer is full, then the

producer shouldn't be allowed to put any data into the buffer.

• The consumer should consume data – only when the buffer is full. If the buffer is empty, then the

consumer shouldn't be allowed to take any data from the buffer.

• The producer and consumer should not access the buffer at the same time.

134 | P A G E Satya Kaveti

public class ProducerConsumerSolutionUsingLock {

 public static void main(String[] arg) {

 // Object on which producer and consumer thread will operate.
 ProducerConsumerImpl sharedObject = new ProducerConsumerImpl();

 // creating producer and consumer threads.
 Productor p = new Productor(sharedObject);
 Consumer c = new Consumer(sharedObject);

 // starting producer and consumer threads.
 p.start();
 c.start();
 }
}

class ProducerConsumerImpl {
 // Productor consumer problem data.
 private static final int CAPACITY = 10;
 private final Queue queue = new LinkedList();
 private final Random theRandom = new Random();

 // Lock and condition variables.
 private final Lock aLock = new ReentrantLock();
 private final Condition bufferNotFull = aLock.newCondition();
 private final Condition bufferNotEmpty = aLock.newCondition();

 public void put() throws InterruptedException {
 aLock.lock();
 try {
 while (queue.size() == CAPACITY) {
 s.o.p(Thread.currentThread().getName() + ": Buffer is full, waiting.");
 bufferNotEmpty.await();
 }

 int number = theRandom.nextInt();
 boolean isAdded = queue.offer(number);
 if (isAdded) {
 s.o.p("%s added %d into queue %n", Thread.currentThread().getName(), number);

 // signal consumer thread that, buffer has element now
 s.o.p(Thread.currentThread().getName() + ": Signaling that buffer has data”);
 bufferNotFull.signalAll();
 }
 } finally {
 aLock.unlock();
 }
 }

135 | P A G E Satya Kaveti

 public void get() throws InterruptedException {
 aLock.lock();
 try {
 while (queue.size() == 0) {
 s.o.p(Thread.currentThread().getName() + ": Buffer is empty, waiting.");
 bufferNotFull.await();
 }

 Integer value = (Integer) queue.poll();
 if (value != null) {
 s.o.p("%s consumed %d from queue %n ", Thread.currentThread().getName(), value);

 // Signal producer thread that, buffer me be empty now
 s.o.p(Thread.currentThread().getName() + ": Signaling buffer is empty ");
 bufferNotEmpty.signalAll();
 }
 } finally {
 aLock.unlock();
 }
 }
}

class Productor extends Thread {
 ProducerConsumerImpl producerConsumer;

 public Productor(ProducerConsumerImpl sharedObject) {
 super("PRODUCER");
 this.producerConsumer = sharedObject;
 }
 @Override
 public void run() {
 try {
 producerConsumer.put();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

class Consumer extends Thread {
 ProducerConsumerImpl producerConsumer;

 public Consumer(ProducerConsumerImpl sharedObject) {
 super("CONSUMER");
 this.producerConsumer = sharedObject;
 }
 @Override
 public void run() {
 try {
 producerConsumer.get();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

https://www.youtube.com/watch?v=N0mMm5PF5Ow&index=11&t=1s&list=PLhfHPmPYPPRk6yMrcbfafF

GSbE2EPK_A6

https://www.youtube.com/watch?v=N0mMm5PF5Ow&index=11&t=1s&list=PLhfHPmPYPPRk6yMrcbfafFGSbE2EPK_A6
https://www.youtube.com/watch?v=N0mMm5PF5Ow&index=11&t=1s&list=PLhfHPmPYPPRk6yMrcbfafFGSbE2EPK_A6

136 | P A G E Satya Kaveti

10. Executor Framework – ThreadPools
Normally we will create & execute Threads in following way.

If we want to run 10 threads, we will do in following way

It we want to run 1000 Threads, then it will become more expensive (more OS Threads, more Heap). Java

will create 1000 OS level Threads to process this.

137 | P A G E Satya Kaveti

We can avoid above situation by create only 10 OS level Threads & submit 1000 jobs to them.

The code for above example will become

138 | P A G E Satya Kaveti

We may heard Dual Core , QuadCore proceesors. Core is nothing but CPU. Each “core” is the part of the

chip that does the processing work. Essentially, each core is a central processing unit (CPU).

If we have QuadCore system, we can able to exceute 4 Threads at a time, each Thread will execute by one

CPU unit of QuadCore.In above examples, we created threadPool of 10, but the best way to provide no.of

threads is by getting CPU count(Processor Count)

The IdealPool size will be no.of CPU cores your system have.

https://www.makeuseof.com/tag/cpu-technology-explained/

139 | P A G E Satya Kaveti

Types of ThreadPools

We have following types of Thread Pools

1. SingleThread Pool

2. FixedThreadPool

3. CachedThreadPool

4. ScheduledThreadPool

5. Fork/Join pool

1.SingleThread Pool

A thread pool with only one thread with an unbounded queue, which only executes one task at a time.

static ExecutorService newSingleThreadExecutor()

2.FixedThreadPool

A thread pool with a fixed number of threads which share an unbounded queue; if all threads are active

when a new task is submitted, they will wait in queue until a thread becomes available

static ExecutorService newFixedThreadPool(int nThreads)

140 | P A G E Satya Kaveti

3.CachedThreadPool

Creates a thread pool that creates new threads as needed, but will reuse previously constructed threads

when they are available

static ExecutorService newCachedThreadPool()

static ExecutorService newCachedThreadPool(ThreadFactory threadFactory)

• It doesn’t have any Queue like FixedThreadPool, instead it has synchronous Queue which holds

one task at a time.

• On Submitting Task, it will search for any Thread is free in current Thread Pool. if not, It will create

another thread to do the job.

• It will kill the useless threads. if Threads idle for more than 60 sec.,

Above 3 are Part of ExecutorService

4.ScheduledThreadPool

creates an executor that can schedule tasks to execute after a given delay, or to execute periodically.

static ScheduledExecutorService newSingleThreadScheduledExecutor()

static ScheduledExecutorService newScheduledThreadPool(int poolSize)

141 | P A G E Satya Kaveti

It will store the all the tasks which are submitted in Delay Queue

5.Fork/Join pool:

 It is a special thread pool that uses the Fork/Join framework to take advantages of multiple processors to

perform heavy work faster by breaking the work into smaller pieces recursively.

Remember method names,

• For Single Thread ends with - **Excecutor()

• For Multiple Threads end with - **ThreadPool()

142 | P A G E Satya Kaveti

ExecutorService API

In the java.util.concurrent package we have following interfaces to work with Thread pools

Executor — Parent class for all Excecutor services

ExecutorService — A subinterface of Executor that adds methods to manage

lifecycle of threads used to run the submitted tasks and methods to produce

a Future to get a result from an asynchronous computation.

ScheduledExecutorService — A subinterface of ExecutorService, to

execute commands periodically or after a given delay

Executors — Utility class for getting ExceutorService Objects.

1.Executors Utility class

Factory and utility methods for Executor,ExecutorService,ScheduledExecutorService, ThreadFactory,

and Callable classes defined in this package. This class supports the following kinds of methods:

• Methods that create and return an ExecutorService set up with commonly useful configuration

settings.

• Methods that create and return a ScheduledExecutorService set up with commonly useful

configuration settings.

• Methods that create and return a "wrapped" ExecutorService, that disables reconfiguration by

making implementation-specific methods inaccessible.

• Methods that create and return a ThreadFactory that sets newly created threads to a known state.

• Methods that create and return a Callable out of other closure-like forms, so they can be used in

execution methods requiring Callable.

2.Executor Interface
The Executor interface provides a single method, execute

void execute(Runnable command)

It designed to be a drop-in replacement for older start() & run(), it a combination of both of them.

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executor.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ScheduledExecutorService.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ThreadFactory.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Callable.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ScheduledExecutorService.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ThreadFactory.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Callable.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executor.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html

143 | P A G E Satya Kaveti

3.ExecutorService Interface
ExecutorService executorService = Executors.newSingleThreadExecutor();
ExecutorService executorService = Executors.newFixedThreadPool(10);
ExecutorService executorService = Executors.newCachedThreadPool();

void execute(Runnable command) //inherited from Executor

Future submit(Callable task)

Future submit(Runnable task)

• The ExecutorService interface implements Executor interface with additional submit() method.

• Like execute() – submit() accepts Runnable objects, but also accepts Callable objects, which

allow the task to return a value.

• The submit() method returns a Future object, which is used to retrieve the Callable return value

and to manage the status of both Callable and Runnable tasks.

• ExecutorService also provides methods for submitting large collections of Callable objects.

• Finally, ExecutorService provides a number of methods for managing the shutdown of the

executor. To support immediate shutdown, tasks should handle interrupts correctly.

Methods

Future submit(Callable<T> task);

// Executes given tasks, returns list of Future results when all complete.
List<Future<T>> invokeAll(Collection<Callable<T> tasks)
List<Future<T>> invokeAll(Collection<Callable<T>> tasks,long timeout, TimeUnit unit)

// Executes the given tasks, returns the result of one of the task completed successfully
T invokeAny(Collection<Callable<T> tasks)
T invokeAny(Collection<Callable<T>> tasks,long timeout, TimeUnit unit)

// Initiates shutdown signal wait for Tasks to complete,but no new tasks will be accepted.
void shutdown();

// Attempts to stop all tasks& returns a list of the tasks that were awaiting execution.
List shutdownNow();

boolean isShutdown();
boolean isTerminated();
boolean awaitTermination(long timeout, TimeUnit unit)

Callable Interface

The Callable interface is similar to Runnable, contains call() method which returns a Value & throws

CheckedException.

public interface Callable<V> {
 V call() throws Exception;
}

Feature Interface

When ever we use sumbit() method, the result will stored in Feature Object. We have following methods

to process the results from Feature Object.

https://docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Callable.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Future.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/interrupt.html

144 | P A G E Satya Kaveti

• V get():get() returns an actual result of the Callable task’s execution or null in the case of

Runnable task. Calling the get() method while the task is still running will cause execution to block

until the task is properly executed and the result is available.

Future<String> future = executorService.submit(callableTask);
String result = null;
try {
 result = future.get();
} catch (InterruptedException | ExecutionException e) {
 e.printStackTrace();
}

• V get(long timeout, TimeUnit t):We can avoid blocking, by specicifing time limit to get the result.

String result = future.get(200, TimeUnit.MILLISECONDS);

If the execution period is longer than specified (in this case 200 milliseconds), a

TimeoutExceptionwill be thrown.

• And also we can use cancel() methods if get() taking more time.

boolean canceled = future.cancel(true);
boolean isCancelled = future.isCancelled();

• boolean isDone():used to check if the assigned task is already processed or not.

class RunnableJob implements Runnable {
 public static int count = 1;

 @Override
 public void run() {
 System.out.println(Thread.currentThread().getName()+" : Runnable JOb :" + count);
 count++;
 }
}
public class ThreadDemo {
 public static void main(String[] args) throws InterruptedException {

 ExecutorService executorService = Executors.newSingleThreadExecutor();
 //ExecutorService executorService = Executors.newFixedThreadPool(10);
 //ExecutorService executorService = Executors.newCachedThreadPool();
 for (int i = 0; i < 20; i++) {
 executorService.submit(new RunnableJob());
 }
 }
}
pool-1-thread-1 : Runnable JOb :1
pool-1-thread-1 : Runnable JOb :2
pool-1-thread-1 : Runnable JOb :3
pool-1-thread-1 : Runnable JOb :4
pool-1-thread-1 : Runnable JOb :5
pool-1-thread-1 : Runnable JOb :6
pool-1-thread-1 : Runnable JOb :7
pool-1-thread-1 : Runnable JOb :8
pool-1-thread-1 : Runnable JOb :9
pool-1-thread-1 : Runnable JOb :10
pool-1-thread-1 : Runnable JOb :11
pool-1-thread-1 : Runnable JOb :12
pool-1-thread-1 : Runnable JOb :13
pool-1-thread-1 : Runnable JOb :14
pool-1-thread-1 : Runnable JOb :15
pool-1-thread-1 : Runnable JOb :16
pool-1-thread-1 : Runnable JOb :17
pool-1-thread-1 : Runnable JOb :18
pool-1-thread-1 : Runnable JOb :19
pool-1-thread-1 : Runnable JOb :20

Here Single Thread pool-1-thread-1 is Exceuting 20 jobs, So Count is Correct & Order is good.

145 | P A G E Satya Kaveti

If we uncomment below line the Output shold be Random, because 10 Threads excuting 20 jobs. So

output will be random, 10 threads will be executing.

ExecutorService executorService = Executors.newFixedThreadPool(10);

 Below Thread names are diffeent, maximum Thread name is thread-10.

pool-1-thread-1 : Runnable JOb :1
pool-1-thread-5 : Runnable JOb :1
pool-1-thread-4 : Runnable JOb :1
pool-1-thread-9 : Runnable JOb :3
pool-1-thread-6 : Runnable JOb :1
pool-1-thread-7 : Runnable JOb :5
pool-1-thread-3 : Runnable JOb :1
pool-1-thread-10 : Runnable JOb :8
pool-1-thread-2 : Runnable JOb :1
pool-1-thread-8 : Runnable JOb :6
pool-1-thread-1 : Runnable JOb :11
pool-1-thread-1 : Runnable JOb :12
pool-1-thread-1 : Runnable JOb :13
pool-1-thread-9 : Runnable JOb :5
pool-1-thread-4 : Runnable JOb :14
pool-1-thread-4 : Runnable JOb :16
pool-1-thread-5 : Runnable JOb :14
pool-1-thread-7 : Runnable JOb :17
pool-1-thread-6 : Runnable JOb :16
pool-1-thread-9 : Runnable JOb :16

If we uncomment below line the Output shold be Random, and also there is no limit on Threads. So

output will be random, threads created based up on tasks we are submitted.

ExecutorService executorService = Executors.newCachedThreadPool();

 Below Thread names are different, maximum Thread name is thread-13.

pool-1-thread-4 : Runnable JOb :1
pool-1-thread-6 : Runnable JOb :1
pool-1-thread-7 : Runnable JOb :2
pool-1-thread-5 : Runnable JOb :1
pool-1-thread-3 : Runnable JOb :1
pool-1-thread-1 : Runnable JOb :1
pool-1-thread-2 : Runnable JOb :1
pool-1-thread-9 : Runnable JOb :6
pool-1-thread-11 : Runnable JOb :8
pool-1-thread-8 : Runnable JOb :3
pool-1-thread-10 : Runnable JOb :8
pool-1-thread-11 : Runnable JOb :12
pool-1-thread-6 : Runnable JOb :13
pool-1-thread-13 : Runnable JOb :12
pool-1-thread-12 : Runnable JOb :12
pool-1-thread-4 : Runnable JOb :12
pool-1-thread-9 : Runnable JOb :12
pool-1-thread-10 : Runnable JOb :12
pool-1-thread-11 : Runnable JOb :19
pool-1-thread-8 : Runnable JOb :20

146 | P A G E Satya Kaveti

class IntCall implements Callable<Integer> {
 @Override
 public Integer call() throws Exception {
 int value = (int) (Math.random() * 50 + 1);
 System.out.println("Generated : " + value);
 return value;
 }
}

public class ExcecutorServiceDemo {
 public static void main(String[] args) throws Exception {

 // submit(Callable<T> task)
 ExecutorService service = Executors.newSingleThreadExecutor();
 Future<Integer> future = service.submit(new IntCall());
 System.out.println("Future : " + future.get());

 //invokeAll(Collection<Callable<T> tasks)
 System.out.println("=================== invokeAll ================= ");
 List<Callable<Integer>> list = new ArrayList<>();
 list.add(new IntCall());
 list.add(new IntCall());
 list.add(new IntCall());

 List<Future<Integer>> futures = service.invokeAll(list);
 for (Future<Integer> f : futures) {
 System.out.println(f.get());
 }

 //Executes the given tasks, returns the result of one of the task completed successfully
 System.out.println("=================== invokeAny ================= ");
 Integer any = service.invokeAny(list);
 System.out.println("invokeAny : " + any);

 // In general, the ExecutorService will not be automatically destroyed when
 // there is not task to process.
 service.shutdown();
 System.out.println("=================== Shutdown ================= ");
 System.out.println("isShutdown : " + service.isShutdown());
 System.out.println("isTerminated : " + service.isTerminated());
 System.out.println("shutdownNow : " + service.shutdownNow());
 }
}
Generated: 34
Future: 34
=================== invokeAll =================
Generated: 27
Generated: 24
Generated: 3
27
24
3
=================== invokeAny =================
Generated : 32
Generated : 44
invokeAny : 32 (gives 1st completed task result)
=================== Shutdown =================
isShutdown : true
isTerminated : true
shutdownNow : []

4.ScheduledExecutorService Interface
ScheduledExecutorService service = Executors.newSingleThreadScheduledExecutor();
ScheduledExecutorService service = Executors.newScheduledThreadPool(10);

147 | P A G E Satya Kaveti

• The ScheduledExecutorService interface is child interface ExecutorService .

• It executes a Runnable or Callable task after a specified delay. In addition, the interface

defines scheduleAtFixedRate and scheduleWithFixedDelay, which executes specified tasks

repeatedly, at defined intervals.

• The ScheduledExecutorService runs tasks after some predefined delay and/or periodically.

1.schedule()

There are two schedule() methods that allow you to execute Runnable or Callable tasks, which will start

after the delay

ScheduledFuture schedule (Runnable command, long delay, TimeUnit unit)

ScheduledFuture schedule (Callable callable, long delay, TimeUnit unit)

2.scheduleAtFixedRate() method lets execute a task periodically after a fixed delay

scheduleAtFixedRate(Runnable r, long initialDelay, long period, TimeUnit u)

The following block of code will execute a task after an initial delay of 100 milliseconds, and after that, it

will execute the same task every 450 milliseconds.

Future<String> resultFuture = service
 .scheduleAtFixedRate(runnableTask, 100, 450, TimeUnit.MILLISECONDS);

If the processor needs more time to execute an assigned task than the period parameter of the

scheduleAtFixedRate() method, the ScheduledExecutorService will wait until the current task is completed

before starting the next.

3.scheduleWithFixedDelay() If it is necessary to have a fixed length delay between iterations of the task,

scheduleWithFixedDelay() should be used. For example, the following code will guarantee a 150-

millisecond pause between the end of the current execution and the start of another one.

ScheduledFuture scheduleWithFixedDelay (Runnable command, long initialDelay, long delay, TimeUnit unit)

below scheduleWithFixedDelay, scheduleAtFixedRate methods are applicable only for Runnabler typoes

butr not Callable Types

service.scheduleWithFixedDelay(task, 100, 150, TimeUnit.MILLISECONDS);

ScheduledExecutorService executor = ...;
Runnable command1 = ...;
Runnable command2 = ...;
Runnable command3 = ...;

// Will start command1 after 50 seconds
executor.schedule(command1, 50L, TimeUnit.SECONDS);

// Will start command2 after 20 seconds, 25 seconds, 30 seconds ...
executor.scheduleAtFixedRate(command2, 20L, 5L, TimeUnit.SECONDS);

// Will start command3 after 10 seconds and if command3 takes 2 seconds to be
// executed also after 17, 24, 31, 38 seconds...
executor.scheduleWithFixedDelay(command3, 10L, 5L, TimeUnit.SECONDS);

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ScheduledExecutorService.html

148 | P A G E Satya Kaveti

class IntCal implements Callable<Integer> {
 @Override
 public Integer call() throws Exception {
 int value = (int) (Math.random() * 50 + 1);
 System.out.println("Generated : " + value);
 return value;
 }
}

class MyRun implements Runnable{
 public void run() {
 System.out.println("Run End @ : "+new Date());
 }
}

public class ScheduledExecutorServiceDemo {

public static void main(String[] args) throws InterruptedException, ExecutionException {

ScheduledExecutorService service = Executors.newSingleThreadScheduledExecutor();

 System.out.println("========= schedule : Start : "+new Date());
 Future f1 = service.schedule(new IntCal(), 5, TimeUnit.SECONDS);
 System.out.println("========= schedule get():"+f1.get()+": End : ");

 System.out.println("========= scheduleAtFixedRate : Start : "+new Date());
 service.scheduleAtFixedRate(new MyRun(), 2, 2, TimeUnit.SECONDS);

 System.out.println("========= scheduleWithFixedDelay : Start : "+new Date());
 service.scheduleWithFixedDelay(new MyRun(), 2, 2, TimeUnit.SECONDS);
 }
}
========= schedule : Start : Wed Dec 26 18:16:15 IST 2018
Generated : 15
========= schedule get():15: End :
========= scheduleAtFixedRate : Start : Wed Dec 26 18:16:21 IST 2018
========= scheduleWithFixedDelay : Start : Wed Dec 26 18:16:21 IST 2018
Run End @ : Wed Dec 26 18:16:23 IST 2018
Run End @ : Wed Dec 26 18:16:23 IST 2018
Run End @ : Wed Dec 26 18:16:25 IST 2018
Run End @ : Wed Dec 26 18:16:25 IST 2018
Run End @ : Wed Dec 26 18:16:27 IST 2018
Run End @ : Wed Dec 26 18:16:27 IST 2018

5.Fork/Join

The fork/join framework is an implementation of the ExecutorService interface that helps you take

advantage of multiple processors. It is designed for work can be broken into smaller pieces recursively.

The goal is to use all the available processing power to enhance the performance of your application

149 | P A G E Satya Kaveti

Here Each of the Thread has it’s own Queue(DeQue – Double ended Queue).

When on submitting task, the task is divided into no. of sub-tasks (4 subtasks for example), each sub-task

will store in one of the locations in DeQue like below

If a Thread doesn’t have any tasks to execute, it will steale the tasks from other threads from backside of

Queue.

150 | P A G E Satya Kaveti

The core classes supporting the Fork-Join mechanism are ForkJoinPool and ForkJoinTask

ForkJoinPool

The ForkJoinPool is basically a specialized implementation of ExecutorService implementing the work-

stealing algorithm we talked about above. We create an instance of ForkJoinPool by providing the

target parallelism level i.e. the number of processors as shown below:

ForkJoinPool pool = new ForkJoinPool(numberOfProcessors);

Where numberOfProcessors = Runtime.getRunTime().availableProcessors();

If you use a no-argument constructor, by default, it creates a pool of size that equals the number of

available processors obtained using above technique.

There are three different ways of submitting a task to the ForkJoinPool.

• execute() method //Desired asynchronous execution; call its fork method to split the work

between multiple threads.

• invoke() method: //Await to obtain the result; call the invoke method on the pool.

• submit() method: //Returns a Future object that you can use for checking status and obtaining

the result on its completion.

ForkJoinTask

This is an abstract class for creating tasks that run within a ForkJoinPool.

• The RecursiveAction and RecursiveTask are the only two direct, known subclasses

of ForkJoinTask.

• The only difference between these two classes is that the RecursiveAction does not return a

value while RecursiveTask does have a return value and returns an object of specified type.

• In both cases, you would need to implement the compute method in your subclass that performs

the main computation desired by the task.

The ForkJoinTask class provides several methods for checking the execution status of a task.

• The isDone() method returns true if a task completes in any way

• The isCompletedNormally() method returns true if a task completes without cancellation or

encountering an exception

• isCancelled()returns true if the task was cancelled. Lastly, isCompletedabnormally() returns true if

the task was either cancelled or encountered an exception.

151 | P A G E Satya Kaveti

public class ForkJoinDemo {
 public static void main(final String[] arguments) throws Exception {
 int nThreads = Runtime.getRuntime().availableProcessors();
 System.out.println("No.of Threads : "+nThreads);

 int[] numbers = new int[1000];
 for (int i = 0; i < numbers.length; i++) {
 numbers[i] = i;
 }

 ForkJoinPool forkJoinPool = new ForkJoinPool(nThreads);
 Long result = forkJoinPool.invoke(new Sum(numbers, 0, numbers.length));
 System.out.println("Sum of 1000 num : "+result);
 }

 static class Sum extends RecursiveTask<Long> {
 int low;
 int high;
 int[] array;

 Sum(int[] array, int low, int high) {
 this.array = array;
 this.low = low;
 this.high = high;
 }

 protected Long compute() {
 if (high - low <= 10) {
 long sum = 0;

 for (int i = low; i < high; ++i)
 sum += array[i];
 return sum;
 } else {
 int mid = low + (high - low) / 2;
 Sum left = new Sum(array, low, mid);
 Sum right = new Sum(array, mid, high);
 left.fork();
 long rightResult = right.compute();
 long leftResult = left.join();
 return leftResult + rightResult;
 }
 }
 }
}
No.of Threads : 2
Sum of 1000 num : 499500

6.Custom ThreadPool

If you see the Source code of ExceutorService, we have below method with parameters.

152 | P A G E Satya Kaveti

153 | P A G E Satya Kaveti

By Defining above parameters properly we can create our own ThreadPoolExecutor.

154 | P A G E Satya Kaveti

Synchronization utilities – more options for doing Synchronization

1.Semaphore(CountDownSemaphore)

Semaphore is one of the synchronization aid provided by Java concurrency util in Java 5 along with other

synchronization aids like CountDownLatch, CyclicBarrier, Phaser and Exchanger.

The Semaphore class present in java.util.concurrent package is a counting-semaphore in which a

semaphore conceptually maintains a set of permits.

Semaphore class in Java has two methods that make use of permits-

• acquire()- Acquires a permit from this semaphore, blocking until one is available, or the thread

is interrupted. It has another overloaded version acquire(int permits).

• release()- Releases a permit, returning it to the semaphore. It has another overloaded method

release(int permits).

How Semaphore works in Java

• Thread that wants to access the shared resource tries to acquire a permit using acquire() method.

At that time if the Semaphore's count is greater than zero thread will acquire a permit and

Semaphore's count will be decremented by one.

• If Semaphore's count is zero and thread calls acquire() method, then the thread will be blocked

until a permit is available.

• When thread is done with the shared resource access, it can call the release() method to release

the permit. That results in the Semaphore's count incremented by one.

Java Semaphore constructors

• Semaphore(int permits)

• Semaphore(int permits, boolean fair)

155 | P A G E Satya Kaveti

50 thraeds are trying to access a slow service , where only 3 threads are allowed.

Let's see one example where Semaphore is used to control shared access. Here we have a shared counter

and three threads using the same shared counter and trying to increment and then again decrement the

count. So every thread should first increment the count to 1 and then again decrement it to 0.

156 | P A G E Satya Kaveti

class SharedCounter implements Runnable{
 private int c = 0;
 private Semaphore s;

 SharedCounter(Semaphore s){
 this.s = s;
 }

// incrementing the value
 public void increment() {
 try {
 // used sleep for context switching
 Thread.sleep(10);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 c++;
 }

 // decrementing the value
 public void decrement() {
 c--;
 }
 public int getValue() {
 return c;
 }

 @Override
 public void run() {
 try {
 // acquire method to get one permit
 s.acquire();
 this.increment();
 SOP("Value for Thread After increment-"+Thread.currentThread().getName()+" " +this.getValue());

 this.decrement();
 SOP("Value for Thread at last"+Thread.currentThread().getName() + " " + this.getValue());
 // releasing permit
 s.release();
 }catch (InterruptedException e) {

 e.printStackTrace();
}

 }
}

public class SemaphoreDemo {
 public static void main(String[] args) {

 Semaphore s = new Semaphore(1);
 SharedCounter counter = new SharedCounter(s);
 // Creating three threads
 Thread t1 = new Thread(counter, "Thread-A");
 Thread t2 = new Thread(counter, "Thread-B");
 Thread t3 = new Thread(counter, "Thread-C");
 t1.start();
 t2.start();
 t3.start();
 }
}
Value for Thread After increment - Thread-A 1
Value for Thread at last Thread-A 0
Value for Thread After increment - Thread-B 1
Value for Thread at last Thread-B 0
Value for Thread After increment - Thread-C 1
Value for Thread at last Thread-C 0

Semaphore is Similar to Lock , and lock() & unlock() methods similar to aquire() & release()

157 | P A G E Satya Kaveti

2.Binary Semaphore(Mutex)

A semaphore initialized to one, and which is used such that it only has at most one permit available, can

serve as a mutual exclusion lock. This is more commonly known as a binary semaphore, because it only

has two states: one permit available, or zero permits available.

When used in this way, the binary semaphore has the property (unlike many Lock implementations), that

the "lock" can be released by a thread other than the owner (as semaphores have no notion of

ownership). This can be useful in some specialized contexts, such as deadlock recovery.

Mutex – Only one thread to access a resource at once. Example, when a client is accessing a file, no one

else should have access the same file at the same time.

Mutex is the Semaphore with an access count of 1. Consider a situation of using lockers in the bank.

Usually the rule is that only one person is allowed to enter the locker room.

public class SemaphoreTest {

 // max 1 people
 static Semaphore semaphore = new Semaphore(1);

// Inner Class
 static class MyLockerThread extends Thread {
 String name = "";
 MyLockerThread(String name) {
 this.name = name;
 }

 public void run() {
 try {
 SOP(name + ":acquiring lock...");
 SOP(name + ":available Semaphore permits Now: "+ semaphore.availablePermits());

 semaphore.acquire();

 System.out.println(name + " : got the permit!");

 try {
 for (int i = 1; i <= 5; i++) {
 SOP(name + " : is performing operation " + i);
 SOP("available Semaphore permits : "+ semaphore.availablePermits());

 // sleep 1 second
 Thread.sleep(1000);
 }
 } finally {
 // calling release() after a successful acquire()
 SOP (name + " : releasing lock...");
 semaphore.release();

 SOP(name +":available Semaphore permits:"+semaphore.availablePermits());
 }
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }

 public static void main(String[] args) {
 System.out.println("Total available Semaphore permits : " + semaphore.availablePermits());

 MyLockerThread t1 = new MyLockerThread("A");
 t1.start();

 MyLockerThread t2 = new MyLockerThread("B");
 t2.start();

 MyLockerThread t3 = new MyLockerThread("C");
 t3.start();

158 | P A G E Satya Kaveti

 MyLockerThread t4 = new MyLockerThread("D");
 t4.start();

 MyLockerThread t5 = new MyLockerThread("E");
 t5.start();

 MyLockerThread t6 = new MyLockerThread("F");
 t6.start();
 }
}

3.CountDownLatch

CountdownLatch is a synchronization mechanism. If there is a situation like All Threads must complete

login(), getAccountNumber() execution before actual execution, in that case it allows one or more

threads to wait until a these operations completed by remaining threads.

Methods (latch - తలుపునకు వయేు గడయి)

• await()

• countDown()

159 | P A G E Satya Kaveti

public class CountDownLatchDemo {
 public static void main(String args[]) {

 final CountDownLatch latch = new CountDownLatch(3);
 Thread cacheService = new Thread(new Service("CacheService", 1000, latch));
 Thread alertService = new Thread(new Service("AlertService", 1000, latch));
 Thread validationService = new Thread(new Service("ValidationService", 1000, latch));

 cacheService.start(); // separate thread will initialize CacheService
 alertService.start(); // another thread for AlertService initialization
 validationService.start();

//application should not start processing any thread until all service is up and ready to do their job.
// Countdown latch is idle choice here, main thread will start with count 3 and wait until count reaches
zero. each thread once up and read will do a count down. this will ensure that main thread is not started
processing until all services is up.

 // count is 3 since we have 3 Threads (Services)
 try {
 latch.await(); // main thread is waiting on CountDownLatch to finish
 System.out.println("All services are up, Application is starting now");
 } catch (InterruptedException ie) {
 ie.printStackTrace();
 }
 }
}

/* Service class which will be executed by Thread using CountDownLatch * synchronizer. */
class Service implements Runnable {
 private final String name;
 private final int timeToStart;
 private final CountDownLatch latch;

 public Service(String name, int timeToStart, CountDownLatch latch) {
 this.name = name;
 this.timeToStart = timeToStart;
 this.latch = latch;
 }
 @Override
 public void run() {
 try {
 Thread.sleep(timeToStart);
 } catch (InterruptedException ex) {
 }
 System.out.println(name + " is Up");
 latch.countDown(); // reduce count of CountDownLatch by 1
 }
}

4.CyclicBrarrier

CyclicBrarrier is a synchronization mechanisum that allows a set of threads to all wait for each other to

reach a common barrier point.

First a new instance of a CyclicBarriers is created specifying the number of threads that the barriers should

wait upon.

CyclicBarrier newBarrier = new CyclicBarrier(numberOfThreads);

Methods

• await()

160 | P A G E Satya Kaveti

Each and every thread does some computation and after completing it’s execution, calls await() methods

as shown:

public void run()
{
 // thread does the computation
 newBarrier.await();
}

Once the number of threads that called await() equals numberOfThreads, the barrier then gives a way

for the waiting threads. The CyclicBarrier can also be initialized with some action that is performed once

all the threads have reached the barrier. This action can combine/utilize the result of computation of

individual thread waiting in the barrier.

Runnable action = ...
//action to be performed when all threads reach the barrier;
CyclicBarrier newBarrier = new CyclicBarrier(numberOfThreads, action);

161 | P A G E Satya Kaveti

class Task implements Runnable {

 private CyclicBarrier barrier;

 public Task(CyclicBarrier barrier) {
 this.barrier = barrier;
 }

 @Override
 public void run() {
 try {
 System.out.println(Thread.currentThread().getName() + " is waiting on barrier");
 barrier.await();
 System.out.println(Thread.currentThread().getName() + " COMPLETED");
 } catch (InterruptedException ex) {
 } catch (Exception ex) {
 }
 }
}

public class CyclicBarrierExample {

 public static void main(String args[]) {
 // creating CyclicBarrier with 3 Threads which, meet at this point
 final CyclicBarrier cb = new CyclicBarrier(3, new Runnable() {
 @Override
 public void run() {
 // This task will be executed once all thread reaches barrier
 System.out.println("================================");
 System.out.println("All parties are arrived at barrier, lets play");
 System.out.println("================================");
 }
 });
 // starting each of thread
 Thread t1 = new Thread(new Task(cb), "Thread 1");
 Thread t2 = new Thread(new Task(cb), "Thread 2");
 Thread t3 = new Thread(new Task(cb), "Thread 3");

 t1.start();
 t2.start();
 t3.start();
 }
}
Thread 1 is waiting on barrier
Thread 3 is waiting on barrier
Thread 2 is waiting on barrier
================================
All parties are arrived at barrier, lets play
================================
Thread 2 COMPLETED
Thread 3 COMPLETED
Thread 1 COMPLETED

5.Phaser

Phaser is like a collection of advantages of CountDownLatch and CyclicBarrierClasses

The CountDownLatch is :

• Created with a fixed number of threads

final CountDownLatch latch = new CountDownLatch(3);

• Cannot be reset

• Allows threads to wait (await()) or continue with its execution once count becomes 0 countDown()

162 | P A G E Satya Kaveti

The CyclicBarrier is:

• Can be reset.

• Does not a provide a method for the threads to advance. The threads have to wait till all the

threads arrive.

• Created with fixed number of threads.

Now, the Phaser has following properties :

• Number of threads need not be known at Phaser creation time. Threads can be added

dynamically.

• Can be reset and hence is, reusable.

• Allows threads to wait(Phaser#arriveAndAwaitAdvance()) or continue with its

execution(Phaser#arrive()).

• Supports multiple Phases(, hence the name phaser).

We will try to understand how the Phaser Class can be used with an example. In this example, we are

creating a three threads, which will wait for the arrival all the threads being created.

Once all the threads have arrived(marked by arriveAndAwaitAdvance() method) the Phaser allows them

through the barrier.

Methods

• awaitAdvance()

• arrive()

163 | P A G E Satya Kaveti

public class PhaserExample {
 public static void main(String[] args) throws InterruptedException {
 Phaser phaser = new Phaser();
 phaser.register();// register self... phaser waiting for 1 party (thread)
 int phasecount = phaser.getPhase();
 System.out.println("Phasecount is " + phasecount);
 new PhaserExample().testPhaser(phaser, 2000);// phaser waiting for 2 parties
 new PhaserExample().testPhaser(phaser, 4000);// phaser waiting for 3 parties
 new PhaserExample().testPhaser(phaser, 6000);// phaser waiting for 4 parties

 // now that all threads are initiated, we will de-register main thread
 // so that the barrier condition of 3 thread arrival is meet.
 phaser.arriveAndDeregister();
 Thread.sleep(10000);
 phasecount = phaser.getPhase();
 System.out.println("Phasecount is " + phasecount);
 }

 private void testPhaser(final Phaser phaser, final int sleepTime) {
 phaser.register();
 new Thread() {

164 | P A G E Satya Kaveti

 @Override
 public void run() {
 try {
 System.out.println(Thread.currentThread().getName() + " arrived");
 phaser.arriveAndAwaitAdvance();// threads register arrival to the phaser.
 Thread.sleep(sleepTime);
 }
 catch (InterruptedException e) {
 e.printStackTrace();
 }
 System.out.println(Thread.currentThread().getName() + " after passing barrier");
 }
 }.start();
 }
}

6.Exchanger

The Exchanger Class provides a sort of meeting point for two threads, where the threads can exchange

their respective Objects with the other thread.

Whenever a thread arrives at the exchange point, it must wait for the other thread to arrive. When the

other pairing thread arrives the two threads proceed to exchange their objects.

The Exchanger Class also provides an overloaded version of the parameterless exchange() method,

exchange(V x, long timeout, TimeUnit unit).

When the exchange method with time-out is used, the waiting thread waits for the period passed as the

argument(long timeout). If the corresponding pairing thread does not arrive at the exchange point in

that time, the waiting Thread throws a java.util.concurrent.TimeoutException.

public class ExchangerExample {

 Exchanger exchanger = new Exchanger();

 private class Producer implements Runnable {
 private String queue;

 @Override
 public void run() {
 try {
 // create tasks & fill the queue exchange the full queue for a
 // empty queue with Consumer
 queue = (String) exchanger.exchange("Ready Queue");
 SOP(Thread.currentThread().getName() + " : now has" + queue);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }

 private class Consumer implements Runnable {
 private String queue;

 @Override
 public void run() {
 try {
 // do procesing & empty the queue exchange the empty queue for a
 // full queue with Producer
 queue = (String) exchanger.exchange("Empty Queue");
 SOP(Thread.currentThread().getName() + ":now has " + queue);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }

165 | P A G E Satya Kaveti

 private void start() {
 new Thread(new Producer(), "Producer").start();
 new Thread(new Consumer(), "Consumer").start();
 }

 public static void main(String[] args) {
 new ExchangerExample().start();
 }
}
Consumer: now has Ready Queue
Producer : now has Empty Queue

• In the above example, we create an Exchanger Object of the type String.

• The Producer thread produces a “filled queue” and exchanges it with the Consumer thread for an

“empty queue”.

• (The filled and empty queue mentioned here are just dummy string object, for the sake of

brevity.). Similarly, we can proceed to exchange any type of object between two threads, merely

by changing the type parameter of Exchanger instance.

Atomic Variables

What is false sharing in the context of multi-threading?

false sharing is one of the well-known performance issues on multi-core systems, where each process has

its local cache.

166 | P A G E Satya Kaveti

Volatile Example

• If writerThread() is executed by one thread & readerThread() is executed by another thread

the ‘x’ value is different for two threads because they are reading value from their LocalCache.

• Here the changes of X value is not visible globally (Field Visibility), because they are changing in

LocalCache.

To avoid this, we need to use ‘volatile’ keyword for fields.

• The Java volatile keyword is used to mark a Java variable as "being stored in main memory".

• that means, every read of a volatile variable will be read from the main memory (Shared

Memory), and not from the CPU cache

• every write to a volatile variable will be written to main memory, and not just to the CPU cache.

167 | P A G E Satya Kaveti

• In the above diagram two threads t1, t2 are trying to change the value of flag.

• If Thread1 changes value flag=false, then it will flush(push) the changes from LocalCache to

SharedCache and it will refresh all Thread LocalCaches with updated value.

• If Thread 2 is trying to read, it will get updated value.

• Volatile solves the visibility problem, where Only one operation is performed.

Atomic Problem

Atomic - forming a single irreducible unit or component in a larger system.

Increment (++) is a Compound Operation(multiple). AtomicVaribles makes compound operations as

Atomic (Single)

168 | P A G E Satya Kaveti

Here volatile works good on Single Operation. When we do Increment like count++

• First operation- it will add +1, one operation completed & it flush changes to SharedCache – but

if any thread access count value, it still shows count= 1, NOT 2

• Second Operation- it will store the incremented count value to 2

We can solve above problem using Synchronization

Another Way using Atomic Variables

169 | P A G E Satya Kaveti

Atomic Variables

The java.util.concurrent.atomic package defines classes that support atomic operations on single

variables. All classes have get() and set() methods that work like reads and writes on volatile variables.

We have following Atomic classes

• AtomicInteger

• AtomicLong

• AtomicBoolean

• AtomicReference

• AtomicIntegerArray

• AtomicLongArray

• AtomicReferenceArray

• incrementAndGet(): Atomically increments by one the current value.

• decrementAndGet(): Atomically decrements by one the current value.

• addAndGet(int delta): Atomically adds the given value to the current value.

• compareAndSet(int expect, int update): Atomically sets the value to the given updated value if

the current value == the expected value.

• getAndAdd(int delta): Atomically adds the given value to the current value.

• set(int newValue): Sets to the given value.

Terms

Liveness(live-less):

A liveness failure occurs when an activity gets into a state such that it is permanently unable to make

forward progress. For example, if thread A is waiting for a resource that thread B holds exclusively, and B

never releases it, A will wait forever.

Race Conditions

A race condition occurs when the correctness of a computation depends on the relative timing or

interleaving of multiple threads by the runtime; in other words, when getting the right answer relies on

lucky timing.

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/package-summary.html

170 | P A G E Satya Kaveti

Threads Interview Questions

Same as ReadWriteLock, but it returns a stamp represented by a long value. Each Stamp is a unique value,

that stamp value compared at unlockWrote()

ExecutorService executor = Executors.newFixedThreadPool(2);
Map<String, String> map = new HashMap<>();
StampedLock lock = new StampedLock();

executor.submit(() -> {
 long stamp = lock.writeLock();
 try {
 sleep(1);
 map.put("foo", "bar");
 } finally {
 lock.unlockWrite(stamp);
 }
});
Runnable readTask = () -> {
 long stamp = lock.readLock();
 try {
 System.out.println(map.get("foo"));
 sleep(1);
 } finally {
 lock.unlockRead(stamp);
 }
};
executor.submit(readTask);
executor.submit(readTask);

stop(executor);

What happens if we start same Thread(ob) Twice?
public class ThreadDemo extends Thread {
 public void run() {
 System.out.println("Iam Running");
 }
 public static void main(String[] args) {
 ThreadDemo ob = new ThreadDemo();
 ob.start();
 ob.start();
 }
}
Exception in thread "main" java.lang.IllegalThreadStateException
at java.lang.Thread.start(Thread.java:705)
at threads.ThreadDemo.main(ThreadDemo.java:11)
Iam Running

What guarantee volatile variable provides?

volatile provides the guarantee, changes made in one thread is visible to others.

What is busy spin?

Busy spinning or busy wait in a multi-threaded environment is a technique where other threads loop

continuously waiting for a thread to complete its task and signal them to start.

while(spinningFlag){

 System.out.println("Waiting busy spinning");

}

What is Thread Dump? How do you take thread dump in Java?

Process has multiple Threads. Thread dump is a summary of the state of all threads of the process

https://netjs.blogspot.com/2016/06/busy-spinning-in-multi-threading.html

171 | P A G E Satya Kaveti

• ‘jstack’ is an effective command line tool to capture thread dumps. It takes the pid of a process

and displays the thread dump in the console. Alternatively, we can redirect its output to a file.

C:\Users\kavetis>jps
14464 BootLanguageServerBootApp
10964 XMLServerLauncher
1316 Eclipse
15788 Jps

C:\Users\kavetis>jstack 1316
2021-08-25 10:41:50
Full thread dump OpenJDK 64-Bit Server VM (15.0.2+7-27 mixed mode):

jstack 17264 > /tmp/threaddump.txt

• Java VisualVM is a GUI tool that provides detailed information about the applications

Why Swing is not thread-safe in Java?

User can’t click two buttons at a time, right? Since GUI screens are mostly updated in response of user

action e.g. when user click a button, and since events are handled in the same Event dispatcher thread, it's

easy to update GUI on that thread.

What is a ThreadLocal variable in Java?

Thread-local variables are variables restricted to a thread, it’s like thread's own copy which is not shared

between multiple threads. Java provides a ThreadLocal class to support thread-local variables, It extends

Object class.

• Basically, it is another way to achieve thread safety apart from writing immutable classes.

• Since Object is no more shared there is no requirement of Synchronization which can improve

scalability and performance of application.

• ThreadLocal provides thread restriction which is extension of local variable. ThreadLocal are visible

only in single thread. No two thread can see each other’s thread local variable.

• These variables are generally private static field in classes and maintain its state inside thread.

• void set(Object value), Object get(), void remove() methods are available

172 | P A G E Satya Kaveti

public class ThreadLocalExample {
 public static class MyRunnable implements Runnable {
 private ThreadLocal<Integer> threadLocal = new ThreadLocal<Integer>();
 public void run() {
 threadLocal.set((int) (Math.random() * 100D));
 System.out.println(threadLocal.get());
 }
 }
 public static void main(String[] args) throws InterruptedException {
 MyRunnable sharedRunnableInstance = new MyRunnable();
 Thread thread1 = new Thread(sharedRunnableInstance);
 Thread thread2 = new Thread(sharedRunnableInstance);
 thread1.start();
 thread2.start();

 thread1.join(); // wait for thread 1 to terminate
 thread2.join(); // wait for thread 2 to terminate
 }
}
36
16

• This example creates a single MyRunnable instance which is passed to two different threads.

• Both threads execute the run() method, and thus sets different values on

the ThreadLocal instance.

• If the access to the set() call had been synchronized, and it had not been a ThreadLocal object, the

second thread would have overridden the value set by the first thread

Write code for thread-safe Singleton in Java?

When we say thread-safe, which means Singleton should remain singleton even if initialization occurs in

the case of multiple threads.

public class DoubleCheckedLockingSingleton {
 private volatile DoubleCheckedLockingSingleton INSTANCE;

 private DoubleCheckedLockingSingleton() {
 }
 public DoubleCheckedLockingSingleton getInstance(){
 if(INSTANCE == null){
 synchronized(DoubleCheckedLockingSingleton.class){
 //double checking Singleton instance
 if(INSTANCE == null){
 INSTANCE = new DoubleCheckedLockingSingleton();
 }
 }
 }
 return INSTANCE;
 }
}

When to use Runnable vs Thread in Java? (Think Inheritance)

it's better to implement Runnable then extends Thread if you also want to extend another class

Difference between Runnable and Callable in Java?

Callable was added on JDK 1.5. Main difference between these two is that Callable's call() method can

return value and throw Exception, which was not possible with Runnable's run() method. Callable return

Future object, which can hold the result of computation.

public class CallableDemo {
 public static void main(String[] args) throws Exception {
 ExecutorService service = Executors.newSingleThreadExecutor();
 SumTask sumTask = new SumTask(20);
 Future<Integer> future = service.submit(sumTask);
 Integer result = future.get();
 System.out.println(result);
 }
}

173 | P A G E Satya Kaveti

class SumTask implements Callable<Integer> {
 private int num = 0;
 public SumTask(int num){
 this.num = num;
 }
 public Integer call() throws Exception {
 int result = 0;
 for(int i=1;i<=num;i++){
 result+=i;
 }
 return result;
 }
}

How to stop a thread in Java?

There were some control methods in JDK 1.0 e.g. suspend() and resume() which are deprecated. To

manually stop, programmers either take advantage of volatile boolean variable and check in every

iteration if run method has loops or interrupt threads to abruptly cancel tasks.

Why wait, notify and notifyAll are not inside Thread class?

• Java provides lock at object level not at thread level. Every object has lock, which is acquired by

thread.

• Now if thread needs to wait for certain lock, it make sense to call wait() on that object rather than

on that thread. If wait() method declared on Thread class, it was not clear that for which lock

thread was waiting.

• In short, since wait, notify and notifyAll operate at lock level, it makes sense to defined it on

object class because lock belongs to object.

What is the difference between livelock and deadlock in Java?

A real-world example of livelock occurs when two people meet in a narrow corridor, and each try to be

polite by moving aside to let the other pass. but they end up staying same side without making any

progress because they both repeatedly move the same way at the same time. In short, the main difference

between livelock and deadlock is that in former state of process change but no progress is made.

How do you check if a Thread holds a lock or not?

There is a method called holdsLock() on java.lang.Thread, it returns true if and only if the current thread

holds the monitor lock on the specified object.

 Thread t = Thread.currentThread();
 System.out.println(Thread.holdsLock(t));

public class ThreadDemo implements Runnable {
 public void run() {
 System.out.println("Currently executing thread is: " + Thread.currentThread().getName());
 System.out.println("Does thread holds lock? " + Thread.holdsLock(this));

 synchronized (this) {
 System.out.println("Does thread holds lock? " + Thread.holdsLock(this));
 }
 }
 public static void main(String[] args) {
 ThreadDemo g1 = new ThreadDemo();
 Thread t1 = new Thread(g1);
 t1.start();
 }
}
Currently executing thread is: Thread-0
Does thread hold lock? false
Does thread hold lock? true

174 | P A G E Satya Kaveti

What is Semaphore in Java?

Semaphore in Java is a new kind of synchronizer. It is a counting semaphore. A semaphore maintains a set

of permits. Each acquire() blocks if necessary, until a permit is available, and then takes it. Each release()

adds a permit, potentially releasing a blocking acquirer. However, no actual permit objects are used; the

Semaphore just keeps a count of the number available and acts accordingly. Semaphore is used to protect

an expensive resource which is available in fixed number e.g. database connection in the pool.

What is the difference between the submit() and execute() method thread pool in Java?

• execute(Runnable command) is defined in Executor interface and executes given task in future,

but more importantly, it does not return anything.

• submit() is an overloaded method, it can take either Runnable or Callable task and can return

Future object which can hold the pending result of computation. This method is defined

on ExecutorService interface, which extends Executor interface, and every other thread pool class

e.g. ThreadPoolExecutor or ScheduledThreadPoolExecutor gets these methods.

Which method of Swing API are thread-safe in Java?

I know about repaint(), and revalidate() being thread-safe but there are other methods on different swing

components e.g. setText() method of JTextComponent, insert() and append() method

of JTextArea class.

What is the difference between the volatile and atomic variable in Java?

For example count++ operation will not become atomic just by declaring count variable as volatile. On

the other hand AtomicInteger class provides atomic method to perform such compound operation

atomically e.g. getAndIncrement() is atomic replacement of increment operator. It can be used to

atomically increment current value by one. Similarly, you have atomic version for other data type and

reference variable as well.

What happens if a thread throws an Exception inside synchronized block?

To answer this question, no matter how you exist synchronized block, either normally by finishing

execution or abruptly by throwing exception, thread releases the lock it acquired while entering that

synchronized block.

How do you ensure that N thread can access N resources without deadlock?

Key point here is order, if you acquire resources in a particular order and release resources in

reverse order you can prevent deadlock.

What is busy spin, and why should you use it?

Busy spinning is a waiting strategy in which one thread loop continuously to check certain condition and

waiting for other thread to change this condition to break the loop without releasing CPU so that waiting

thread can proceed its work further

What’s the difference between Callable and Runnable?

Both of these are interfaces used to carry out task to be executed by a thread. The main difference

between the two interfaces is that

• Callable can return a value, while Runnable cannot.

• Callable can throw a checked exception, while Runnable cannot.

• Runnable has been around since Java 1.0, while Callable was introduced as part of Java 1.5.

175 | P A G E Satya Kaveti

Callable is an interface, contains a single call() method – which returns a generic value V:

public interface Callable<V> {
 V call() throws Exception;
}

class CallableExample implements Callable
{
 public Object call() throws Exception
 {
 Random generator = new Random();
 Integer randomNumber = generator.nextInt(5);
 Thread.sleep(randomNumber * 1000);

 return randomNumber;
 }
}

Object level and Class level locks in Java

In Single line

• Object level lock means Instance Synchronized method

• Class level lock means Static Synchronized method

Object level lock : Every object in java has a unique lock. Whenever we are using synchronized keyword,

then only lock concept will come in the picture. If a thread wants to execute synchronized method on

the given object. First, it has to get lock of that object.

Once thread got the lock then it is allowed to execute any synchronized method on that object. Once

method execution completes automatically thread releases the lock. Acquiring and release lock internally

is taken care by JVM and programmer is not responsible for these activities. Let’s have a look on the

below program to understand the object level lock:

class Geek implements Runnable {
 public void run() {
 Lock();
 }

 public void Lock() {
 System.out.println(Thread.currentThread().getName());

 synchronized (Geek.class) {
 System.out.println("in block " + Thread.currentThread().getName());
 System.out.println("in block " + Thread.currentThread().getName() + " end");
 }
 }

 public static void main(String[] args) {
 Geek g1 = new Geek();
 Thread t1 = new Thread(g1);
 Thread t2 = new Thread(g1);

 Geek g2 = new Geek();
 Thread t3 = new Thread(g2);

 t1.setName("t1");
 t2.setName("t2");
 t3.setName("t3");

 t1.start();
 t2.start();
 t3.start();
 }
}

176 | P A G E Satya Kaveti

t3
t2
t1
in block t3
in block t3 end
in block t1
in block t1 end
in block t2
in block t2 end

In above Threads

• If t1 -gets lock, t2 won’t execute – because object lock is there, but t3 can execute – because it is a

separate object. So t1, t3 are executed in parallel, but t2 waits until t1 completed its execution.

Class level lock: Every class in java has a unique lock which is nothing but class level lock. If a thread

wants to execute a static synchronized method, then thread requires class level lock. Once a thread got

the class level lock, then it is allowed to execute any static synchronized method of that class. Once

method execution completes automatically thread releases the lock. Lets look on the below program for

better understanding: just changed lock method to static.

public static void Lock() {
 System.out.println(Thread.currentThread().getName());

 synchronized (Geek.class) {
 System.out.println("in block " + Thread.currentThread().getName());
 System.out.println("in block " + Thread.currentThread().getName() + " end");
 }
}

t1
t3
t2
in block t1
in block t1 end
in block t2
in block t2 end
in block t3
in block t3 end

In above, If t1 -gets lock, t2, t3 won’t execute – because Class lock is there. So above output is ordered.

Producer-Consumer solution using threads in Java

• The producer’s job is to generate data, put it into the buffer, and start again.

• same time, the consumer is consuming the data (i.e. removing it from the buffer), one piece at a time.

• producer won’t try to add data into the buffer if it’s full & consumer won’t try to remove data from an

empty buffer

class Producer extends Thread {
 List buffer;
 int maxsize;

 public Producer(List buffer, int maxsize) {
 this.buffer = buffer;
 this.maxsize = maxsize;
 }

177 | P A G E Satya Kaveti

 @Override
 public void run() {
 int i = 1;
 while (true) {
 synchronized (buffer) {
 try {
 if (buffer.size() == maxsize) {
 System.out.println("Maximum Size Reached, wait until consume");
 buffer.wait();
 } else {
 buffer.add(i++);
 System.out.println(i + " : Produced, notify wating COnsumer Thread");
 buffer.notifyAll();

 }
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }
 }
}

class Consumer extends Thread {
 List buffer;
 int maxsize;

 public Consumer(List buffer, int maxsize) {
 this.buffer = buffer;
 this.maxsize = maxsize;
 }

 @Override
 public void run() {

 while (true) {
 try {
 synchronized (buffer) {
 if (buffer.isEmpty()) {
 System.out.println("Consumer : Buffer Empty, wait untill produce");
 buffer.wait();
 } else {
 Object ob = buffer.remove(0);
 System.out.println(ob + " : Removed, notify Producer waiting for Removing for maxsize");
 buffer.notifyAll();
 }
 }
 } catch (Exception e) {
 // TODO: handle exception
 }
 }
 }
}

public class ProducerConsumer {

 public static void main(String[] args) {
 List buffer = new LinkedList<>();
 Producer producer = new Producer(buffer, 10);
 Consumer consumer = new Consumer(buffer, 10);
 producer.start();
 consumer.start();
 }
}
28054 : Produced, notify wating COnsumer Thread
28055 : Produced, notify wating COnsumer Thread
28056 : Produced, notify wating COnsumer Thread
28057 : Produced, notify wating COnsumer Thread
28058 : Produced, notify wating COnsumer Thread
28059 : Produced, notify wating COnsumer Thread
28060 : Produced, notify wating COnsumer Thread

178 | P A G E Satya Kaveti

Maximum Size Reached, wait until consume
28050 : Removed, notify Producer waiting for Removing for maxsize
28051 : Removed, notify Producer waiting for Removing for maxsize
28052 : Removed, notify Producer waiting for Removing for maxsize
28053 : Removed, notify Producer waiting for Removing for maxsize
28054 : Removed, notify Producer waiting for Removing for maxsize
28055 : Removed, notify Producer waiting for Removing for maxsize
28056 : Removed, notify Producer waiting for Removing for maxsize
28057 : Removed, notify Producer waiting for Removing for maxsize
28058 : Removed, notify Producer waiting for Removing for maxsize
28059 : Removed, notify Producer waiting for Removing for maxsize
Consumer : Buffer Empty, wait untill produce

Thread. yield ()

yield() method: Theoretically, to ‘yield’ means to let go, to give up, to surrender. A yielding thread

tells the virtual machine that it’s willing to let other threads be scheduled in its place.

This indicates that it’s not doing something too critical. Note that it’s only a hint, though, and not

guaranteed to have any effect at all.

• Yield is a Static method and Native too.

• Yield tells the currently executing thread to give a chance to the threads that have equal priority in

the Thread Pool.

• There is no guarantee that Yield will make the currently executing thread to runnable state

immediately.

• It can only make a thread from Running State to Runnable State, not in wait or blocked state.

What do you understand about Thread Priority?

Every thread has a priority, usually higher priority thread gets precedence in execution, but it depends on

Thread Scheduler implementation that is OS dependent. We can specify the priority of thread, but it

doesn’t guarantee that higher priority thread will get executed before lower priority thread.

How can we make sure main() is the last thread to finish in Java Program?

We can use Thread join() method to make sure all the threads created by the program is dead before

finishing the main function.

Why wait(), notify() and notifyAll() methods have to be called from synchronized

method or block?

• When a Thread calls wait() on any Object, it must have the monitor on the Object that it will

leave and goes in wait state until any other thread call notify() on this Object.

• Similarly when a thread calls notify() on any Object, it leaves the monitor on the Object and

other waiting threads can get the monitor on the Object.

• Since all these methods require Thread to have the Object monitor, that can be achieved only by

synchronization, they need to be called from synchronized method or block.

How can we achieve thread safety in Java?

There are several ways to achieve thread safety in java – synchronization, atomic concurrent classes,

implementing concurrent Lock interface, using volatile keyword, using immutable classes and Thread

safe classes.

https://howtodoinjava.com/java-5/java-executor-framework-tutorial-and-best-practices/

179 | P A G E Satya Kaveti

What is volatile keyword in Java

When we use volatile keyword with a variable, all the threads read it’s value directly from the main

memory and don’t read from cache. This makes sure that the value read is the same as in the memory.

What is ThreadLocal?

Java ThreadLocal is used to create thread-local variables. We know that all threads of an Object share it’s

variables, so if the variable is not thread safe, we can use synchronization but if we want to avoid

synchronization, we can use ThreadLocal variables.

Every thread has it’s own ThreadLocal variable and they can use it’s get() and set() methods to get the

default value or change it’s value local to Thread. ThreadLocal instances are typically private static fields in

classes that wish to associate state with a thread

What is BlockingQueue? implement Producer-Consumer using Blocking Queue?

• java.util.concurrent.BlockingQueue is a Queue that supports operations that wait for the queue to

become non-empty when retrieving and removing an element, and wait for space to become

available in the queue when adding an element.

• BlockingQueue doesn’t accept null values and throw NullPointerException if you try to store null

value in the queue.

• BlockingQueue implementations are thread-safe. All queuing methods are atomic in nature and use

internal locks or other forms of concurrency control.

• BlockingQueue interface is part of java collections framework and it’s primarily used for implementing

producer consumer problem. Check this post for BlockingQueue.

What is Executors Class?

Executors class provide utility methods for Executor, ExecutorService, ScheduledExecutorService,

ThreadFactory, and Callable classes.

Executors class can be used to easily create Thread Pool in java, also this is the only class supporting

execution of Callable implementations.

What happens when an Exception occurs in a thread?

Thread.UncaughtExceptionHandler is an interface, defined as nested interface for handlers invoked

when a Thread abruptly terminates due to an uncaught exception.

When a thread is about to terminate due to an uncaught exception the Java Virtual Machine will query the

thread for its UncaughtExceptionHandler using Thread.getUncaughtExceptionHandler() and will invoke

the handler's uncaughtException() method, passing the thread and the exception as arguments.

Why wait, notify and notifyAll are not inside thread class?

One reason which is obvious is that Java provides lock at object level not at thread level.

How do you check if a Thread holds a lock or not?

Boolean Thread.holdsLock(Obj)

https://www.journaldev.com/1260/collections-in-java-tutorial
https://www.journaldev.com/1034/java-blockingqueue-example

180 | P A G E Satya Kaveti

11.Collections Framework

Traditional Data Structures

Data structure is a particular way of storing and organizing data in a computer.so that it can be used

efficiently.

Depending on the organization of the elements, data structures are classified into two types:

• Linear data structures: Elements are accessed in a sequential order, but it is not compulsory to

store all elements sequentially. Examples: Linked Lists, Stacks and Queues.

• Non – linear data structures: Elements of this data structure are stored/accessed in a non-linear

order. Examples: Trees and graphs.

Analysis of Algorithms?

To go from city “A” to city “B”, there can be many ways of accomplishing this: by flight, by bus, by train

and by bicycle. Depending on the availability and convenience, we choose the one that suits us. Similarly,

in computer science, multiple algorithms are available for solving the same problem (for example, a

sorting problem has many algorithms, like insertion sort, selection sort, quick sort and many more).

Algorithm analysis helps us to determine which algorithm is most efficient in terms of time and space

consumed.

Worst case

• Defines the input for which the algorithm takes a long time (slowest time to complete).

• Input is the one for which the algorithm runs the slowest.

Best case

• Defines the input for which the algorithm takes the least time (fastest time to complete).

• Input is the one for which the algorithm runs the fastest.

Average case

• Provides a prediction about the running time of the algorithm.

• Run the algorithm many times, using many different inputs take the average of them.

For analysis (best case, worst case, and average), we try to give the upper bound (O) and lower

bound (Ω) and average running time (Θ).

Types of Data Structures

• Primitive data structures

• Non-primitive data structures

181 | P A G E Satya Kaveti

• Primitive Data Structures are the basic data structures that directly operate upon the machine

instructions.

• Integers, Floating, Character, String constants and Pointers come under this category.

• Non-primitive data structures are more complicated data structures and are derived

from primitive data structures.

• They emphasize on grouping same or different data items with relationship between each data

item. Arrays, Lists and Files come under this category.

Linked Lists

- Linked List

- Doubly Linked List

- Circular Linked List

Stack & Queue

 - Stack

 - Queue

Tree Data Structure

 - Tree Data Structure

 - Tree Traversal

 - Binary Search Tree

 - AVL Tree

 - Spanning Tree

- Heap

Graph Data Structure

 - Graph Data Structure

 - Depth First Traversal

 - Breadth First Traversal

182 | P A G E Satya Kaveti

An array is a sequential collection of elements of same data type and stores data elements in a

continuous memory location. The elements of an array are accessed by using an index. The index of an

array of size N can range from 0 to N−1.

Basic Operations

Following are the basic operations supported by an array.

• Insertion − Adds an element at the given index.

• Deletion − Deletes an element at the given index.

• Search − Searches an element using the given index or by the value.

• Update − Updates an element at the given index.

• Traverse − print all the array elements one by one.

1.Linked List

Like arrays, Linked List is a linear data structure. Unlike arrays, linked list elements are not Stores in a

continuous memory location; the elements are linked using pointers

Node: A node is a collection of two sub-elements or parts. A data part that stores the element and

a next part that stores the link to the next node.

Arrays can be used to store linear data of similar types, but arrays have following limitations.

• The size of the arrays is fixed: So, we must know the upper limit on the number of elements in

advance

• Inserting a new element in an array of elements is expensive. Because room has to be created for

the new elements and to create room existing elements have to shifted.

Following are the various types of linked list.

• Simple Linked List − Item navigation is forward only.

• Doubly Linked List − Items can be navigated forward and backward.

• Circular Linked List − Last item contains link of the first element as next and the first element has

a link to the last element as previous.

183 | P A G E Satya Kaveti

Simple Linked List

Following are the basic operations supported by a list.

• Insertion − Adds an element at the beginning of the list.

• Deletion − Deletes an element at the beginning of the list.

• Display − Displays the complete list.

• Search − Searches an element using the given key.

• Delete − Deletes an element using the given key.

1.A linked list is represented by a pointer to the first node of the linked list. The first node is called head. If

the linked list is empty, then value of head is NULL.

2. Each node in a list consists of at least two parts:

• Data

• Pointer (Or Reference) to the next node

3.In Java, LinkedList can be represented as a class and a Node as a separate class. The LinkedList class

contains a reference of Node class type.

class LinkedList
{
 Node head; // head of list
 /* Linked list Node*/
 class Node
 {
 int data;
 Node next;
 // Constructor to create a new node Next is by default initialized as null
 Node(int d) {

data = d;
}

 }
}

Doubly Linked List
A Doubly Linked List (DLL) contains an extra pointer, typically called previous pointer, together with next

pointer and data which are there in singly linked list.

Following are the basic operations supported by a list.

• Insertion − Adds an element at the beginning of the list.

• Deletion − Deletes an element at the beginning of the list.

• Insert Last − Adds an element at the end of the list.

• Delete Last − Deletes an element from the end of the list.

• Insert After − Adds an element after an item of the list.

• Delete − Deletes an element from the list using the key.

• Display forward − Displays the complete list in a forward manner.

184 | P A G E Satya Kaveti

• Display backward − Displays the complete list in a backward manner.

public class DLL {

 Node head; // head of list

 /* Doubly Linked list Node*/

 class Node {

 int data;

 Node prev;

 Node next;

 // Constructor to create a new node next and prev is by default initialized as null

 Node(int d) {
 data = d;
}

 }

}

Circular Linked List
Circular Linked List is a variation of Linked list in which the first element points to the last element and the

last element points to the first element. Both Singly Linked List and Doubly Linked List can be made into a

circular linked list.

In singly linked list, the next pointer of the last node points to the first node.

In doubly linked list, the next pointer of the last node points to the first node and the previous pointer

of the first node points to the last node making the circular in both directions.

2.Stack

A stack is an Abstract Data Type (ADT), commonly used in most programming languages. It is named

stack as it behaves like a real-world stack, for example – a deck of cards or a pile of plates, etc.

• push() − Adding (pushing) an element on the stack.

• pop() − Removing (accessing) an element from the stack.

• peek() − get the top data element of the stack, without removing it.

185 | P A G E Satya Kaveti

• isFull() − check if stack is full.

• isEmpty() − check if stack is empty.

• Step 1 − Checks if the stack is full.

• Step 2 − If the stack is full, produces an error and exit.

• Step 3 − If the stack is not full, increments top to point next empty space.

• Step 4 − Adds data element to the stack location, where top is pointing.

• Step 5 − Returns success.

3.Queue

Queue is open at both its ends. One end is always used to insert data (enqueue) and the other is used

to remove data (dequeue). Queue follows First-In-First-Out methodology, i.e., the data item stored first

will be accessed first.

• enqueue() − add (store) an item to the queue.

• dequeue() − remove (access) an item from the queue.

• peek() − Gets the element at the front of the queue without removing it.

• isFull() − Checks if the queue is full.

• isEmpty() − Checks if the queue is empty.

• Step 1 − Check if the queue is full.

• Step 2 − If the queue is full, produce overflow error and exit.

• Step 3 − If the queue is not full, increment rear pointer to point the next empty space.

• Step 4 − Add data element to the queue location, where the rear is pointing.

• Step 5 − return success.

186 | P A G E Satya Kaveti

4.Trees

Unlike Arrays, Linked Lists, Stack, and queues, which are linear data structures, trees are hierarchical data

structures.

Tree Vocabulary:

• The topmost node is called root of the tree.

• The elements that are directly under an element are called its children.

• The element directly above something is called its parent.

 j <-- root
 / \
 f k <-- parents
 / \ \
 a h z <-- leaves

Why Trees?

1. One reason to use trees might be because you want to store information that naturally forms a

hierarchy. For example, the file system on a computer.

2. Trees (with some ordering e.g., BST) provide moderate access/search (quicker than Linked List and

slower than arrays).

3. Trees provide moderate insertion/deletion (quicker than Arrays and slower than Linked Lists).

4. Like Linked Lists and unlike Arrays, Trees don’t have an upper limit on number of nodes as nodes

are linked using pointers.

Binary Tree
A binary tree has a special condition that each node can have a maximum of two children.

Binary Search Tree
Binary Search tree exhibits a special behavior.

• The node's left child must less than its parent's value

• The node's right child must greater than its parent value.

187 | P A G E Satya Kaveti

The basic operations that can be performed on a binary search tree data structure, are the following

• Insert − Inserts an element in a tree/create a tree.

• Search − Searches an element in a tree.

• Inorder Traversal − - left subtree first, then the root and later the right sub-tree.

• Preorder Traversal − root node is first, then the left subtree and later the right sub-tree

• Postorder Traversal − left subtree first, then the right subtree and later root node

If root is NULL
 then create root node
return

If root exists then
 compare the data with node.data

 while until insertion position is located

 If data is greater than node.data
 goto right subtree
 else
 goto left subtree

 endwhile

 insert data

end If

In-order Traversal - left subtree is visited first, then the root and later the right sub-tree.

We start from A, and following in-order traversal, we move to

its left subtree B. B is also traversed in-order. The process

goes on until all the nodes are visited. The output of inorder

traversal of this tree will be −D → B → E → A → F → C → G

Algorithm

Until all nodes are traversed −
Step 1 − Recursively traverse left subtree.
Step 2 − Visit root node.
Step 3 − Recursively traverse right subtree.

Pre-order Traversal

In this traversal method, the root node is visited first, then the left subtree and finally the right subtree.

188 | P A G E Satya Kaveti

We start from A, and following pre-order traversal, we first

visit A itself and then move to its left subtree B. B is also

traversed pre-order. The process goes on until all the nodes

are visited. The output of pre-order traversal of this tree will

be −A → B → D → E → C → F → G

Until all nodes are traversed −
Step 1 − Visit root node.
Step 2 − Recursively traverse left subtree.
Step 3 − Recursively traverse right subtree.

Post-order Traversal

In this traversal method, the root node is visited last, hence the name. First, we traverse the left subtree,

then the right subtree and finally the root node.

We start from A, and following Post-order traversal, we first visit

the left subtree B. B is also traversed post-order. The process

goes on until all the nodes are visited. The output of post-order

traversal of this tree will be −D → E → B → F → G → C → A

Until all nodes are traversed −
Step 1 − Recursively traverse left subtree.
Step 2 − Recursively traverse right subtree.
Step 3 − Visit root node.

AVL Trees
AVL tree is a self-balancing Binary Search Tree (BST) where the difference between heights of left and

right subtrees cannot be more than one for all nodes.

BalanceFactor = (height of left subtree) – (height of right subtree)

189 | P A G E Satya Kaveti

1.Tree-1 is AVL because differences between heights of left and right subtrees for every node is less

than or equal to 1.

2.Tree-2 is not AVL because differences between heights of left and right subtrees for 8 and 18 is greater

than 1

Sorting Algorithms

Sorting refers to arranging data in a particular format. Sorting algorithm specifies the way to arrange data

in a particular order.

Bubble Sort Algorithm

This sorting algorithm is comparison-based algorithm in which each pair of adjacent elements is

compared, and the elements are swapped if they are not in order.

This algorithm is not suitable for large data sets as its average and worst-case complexity are of Ο(n2)

where n is the number of items.

Let's consider an array with values {5, 1, 6, 2, 4, 3}

190 | P A G E Satya Kaveti

So, as we can see in the representation above, after the first iteration, 6 is placed at the last index, which is

the correct position for it. Similarly, after the second iteration, 5 will be at the second last index, and so on.

begin BubbleSort(list)

 for all elements of list
 if list[i] > list[i+1]
 swap(list[i], list[i+1])
 end if
 end for

 return list

end BubbleSort

Insertion Sort – Pick & Insert in Correct order using Sorted Sub list

We take an unsorted array for our example.

Insertion sort compares the first two elements.

It finds that both 14 and 33 are already in ascending order. For now, 14 is in sorted sub-list.

Insertion sort moves ahead and compares 33 with 27.

And finds that 33 is not in the correct position.

It swaps 33 with 27. It also checks with all the elements of sorted sub-list. Here we see that the sorted sub-

list has only one element 14, and 27 is greater than 14. Hence, the sorted sub-list remains sorted after

swapping.

By now we have 14 and 27 in the sorted sub-list. Next, it compares 33 with 10.

These values are not in a sorted order.

191 | P A G E Satya Kaveti

So, we swap them.

However, swapping makes 27 and 10 unsorted.

Hence, we swap them too.

Again, we find 14 and 10 in an unsorted order.

We swap them again. By the end of third iteration, we have a sorted sub-list of 4 items.

This process goes on until all the unsorted values are covered in a sorted sub-list. Now we shall see some

programming aspects of insertion sort.

Algorithm

Now we have a bigger picture of how this sorting technique works, so we can derive simple steps by

which we can achieve insertion sort.
Step 1 − If it is the first element, it is already sorted. return 1;
Step 2 − Pick next element
Step 3 − Compare with all elements in the sorted sub-list
Step 4 − Shift all the elements in the sorted sub-list that is greater than the value to be sorted
Step 5 − Insert the value
Step 6 − Repeat until list is sorted

Selection Sort

Selection sort is conceptually the simplest sorting algorithm. This algorithm will first find

the smallest element in the array and swap it with the element in the first position, then it will find

the second smallest element and swap it with the element in the second position, and it will keep on

doing this until the entire array is sorted.

192 | P A G E Satya Kaveti

Step 1 − Set MIN to location 0
Step 2 − Search the minimum element in the list
Step 3 − Swap with value at location MIN
Step 4 − Increment MIN to point to next element
Step 5 − Repeat until list is sorted

Merge Sort Algorithm

Merge Sort follows the rule of Divide and Conquer to sort a given set of numbers/elements, recursively,

hence consuming less time.

If we can break a single big problem into smaller sub-problems,

solve the smaller sub-problems and combine their solutions to

find the solution for the original big problem, it becomes easier

to solve the whole problem.

193 | P A G E Satya Kaveti

Algorithm

Merge sort keeps on dividing the list into equal halves until it can no more be divided. If it is only one

element in the list, it is sorted. Then, merge sort combines the smaller sorted lists keeping the new list

sorted too.

Step 1 − if it is only one element in the list it is already sorted, return.
Step 2 − divide the list recursively into two halves until it can no more be divided.
Step 3 − merge the smaller lists into new list in sorted order.

Quick Sort

Quick sort is based on the divide-and-conquer approach based on the idea of choosing one element as

a pivot element (normally height index value) and partitioning the array around it such that:

• Left side of pivot contains all the elements that are less than the pivot element

• Right side contains all elements greater than the pivot

For example: In the array {52, 37, 63, 14, 17, 8, 6, 25}, we take 25 as pivot. So, after the first

pass, the list will be changed like this.

{6 8 17 14 25 63 37 52}

Hence after the first pass, pivot will be set at its position, with all the elements smaller to it on its left and

all the elements larger than to its right. Now 6 8 17 14 and 63 37 52 are considered as two separate

subarrays, and same recursive logic will be applied on them, and we will keep doing this until the

complete array is sorted.

Step 1 − Choose the highest index value has pivot

194 | P A G E Satya Kaveti

Step 2 − Take two variables to point left and right of the list excluding pivot
Step 3 − left points to the low index
Step 4 − right points to the high
Step 5 − while value at left is less than pivot move right
Step 6 − while value at right is greater than pivot move left
Step 7 − if both step 5 and step 6 does not match swap left and right
Step 8 − if left ≥ right, the point where they met is new pivot

Searching Algorithms

Well, to search an element in a given array, there are two popular algorithms available:

1. Linear Search

2. Binary Search

Linear Search

Linear search is a very basic and simple search algorithm. In Linear search, we search an element or value

in a given array by traversing the array from the starting, till the desired element or value is found.

For example, consider the following image:

If you want to determine the positions of the occurrence of the number 7 in this array, we need to

compare every element in the array from start to end, i.e., from index 1 to index 10 will be compared with

number 7, to check which element matches the number 7.

Linear Search (Array A, Value x)

Step 1: Set i to 1
Step 2: if i > n then go to step 7
Step 3: if A[i] = x then go to step 6
Step 4: Set i to i + 1
Step 5: Go to Step 2
Step 6: Print Element x Found at index i and go to step 8
Step 7: Print element not found
Step 8: Exit

Binary Search Algorithm

Binary Search is applied on the sorted array or list of large size. It's time complexity of O(log n) makes it

very fast as compared to other sorting algorithms. The only limitation is that the array or list of elements

must be sorted for the binary search algorithm to work on it.Binary search works only on a sorted set of

elements. To use binary search on a collection, the collection must first be sorted.

When binary search is used to perform operations on a sorted set, the number of iterations can always be

reduced based on the value that is being searched. Let us consider the following array:

By using linear search, the position of element 8 will be determined in the 9th iteration.

195 | P A G E Satya Kaveti

By using Binary Search Algorithm, before we start the search, we need to know the start and end of the

range. Let’s call them Low and High.

Low = 0

High = n-1

median = (Low+High)/2;

We need to search for value 3

Referring to the image above, the lower bound is 0 and the upper bound is 9. The median of the lower

and upper bounds is (lower_bound + upper_bound) / 2 = 4. Here a[4] = 4.

The value 4>2, which is not the value that you are searching for. Therefore, we do not need to conduct a

search on any element beyond 4 as the elements beyond it will obviously be greater than 2.

Therefore, we can always drop the upper bound of the array to the position of element 4. Now, we follow

the same procedure on the same array with the following values:

Low: 0

High: 3

Repeat this procedure recursively until Low > High. If at any iteration, we get a[mid]=key, we return

value of mid. This is the position of key in the array. If key is not present in the array, we return −1.

Java Collections Framework

196 | P A G E Satya Kaveti

Iterator interface: provides the facility of iterating the elements in forward direction only.

public boolean hasNext() It returns true if iterator has more elements.

public Object next() It returns the element and moves the cursor pointer to the next element.

public void remove() It removes the last elements returned by the iterator. It is rarely used.

Collection: Root interface with basic methods like add(), remove(), contains(), isEmpty(),etc.

• If you see above only add, remove methods are there. get() is not there.

• get() methods are implemented based on underlying data Structure .

• add(Object) method is Object based, not index. Because these are generalized methods which

will apply for all collection classes

List

1. List is child interface of collection

2. If we want to represent group of individual objects as a single entity where duplicates are

allowed & insertion order must be preserved, then we should go for List

3. Index will play very important role in List

4. We can preserve insertion order via index & differentiate duplicate objects using index

Add / Remove Find Special

Boolean add(int index, Object o)

Boolean addAll(int index, Collection c)

Boolean remove(int index)

Object get(int index)

Object set(int Object)

int indexOf(Object c)

int lastIndexOf(Object c)

ListIterator listIterator()

ArrayList – Internal implementation

• The underlying data structure is ResizableArray or Growable Array

• Duplicates are allowed

• Insertion order is preserved

http://www.smlcodes.com/wp-content/uploads/2016/09/image2-5.png

197 | P A G E Satya Kaveti

• Heterogeneous (different datatypes) Objects are allowed

• null is insertion is allowed

• ArrayList implements Serializable, Cloneable & RandomAccess

• Except TreeSet & TreeMap Everywhere Heterogeneous Objects are allowed

public class ArrayListDemo {
 public static void main(String[] args) {
 ArrayList l = new ArrayList<>();
 l.add("A");
 l.add(10);
 l.add("A");
 l.add(null);
 System.out.println(l); // [A, 10, A, null]

 l.remove(2);
 System.out.println(l); // [A, 10, null]

 l.add(2, "M");
 System.out.println(l); // [A, 10, M, null]

 l.add("N");
 System.out.println(l); // [A, 10, M, null, N]
 }
}

Internal implementation: (Ref)

1.ArrayList grows dynamically as the elements are added to it. Internally an ArrayList uses

an Object[] Array.

private transient Object[] elementData;

2. When an object of ArrayList is created without initial capacity, the default constructor of

the ArrayList class is invoked. default capacity of 10 is assigned at a time of empty initialization of

ArrayList.

public ArrayList() {
 this(10);
 }

3. In the add(Object), the capacity of the ArrayList will be checked before adding a new element

public boolean add(E e) {
 ensureCapacity(size + 1); // Increments modCount!!
 elementData[size++] = e; // elemetdata[11] = 100; - adding new element to next index
 return true;
}

public void ensureCapacity(int minCapacity) {
 if (minCapacity > oldCapacity) {
 int newCapacity = (oldCapacity * 3) / 2 + 1;
 elementData = Arrays.copyOf(elementData, newCapacity);
 }
}

4. If size of the filled elements is greater than the maximum size of the array, then it will increase the size

of array by using below formulae, Then elements will copy to old Array to New Array

Till Java 6 : int newCapacity = (oldCapacity * 3)/2 + 1;

From Java 7 : int newCapacity = oldCapacity + (oldCapacity >> 1); (50% of old)

5.If elements are adding in the middle index, Array Elements will be shifted to Right

http://www.codenuclear.com/how-arraylist-works-internally-java/

198 | P A G E Satya Kaveti

o Adding → NOT good → o(n)

o get(by index) → Good → o(1)

Interviewer: What is the runtime performance of the get() method in ArrayList , where n represents

the number of elements ?

get() ,set() , size() operations run in constant time i.e O(1)

add() operation runs in amortized constant time , i.e adding n elements require O(n) time.

public class ArrayListDemo {
public static void main(String[] args) {
 /*1.ArrayList With Defalut Capacity 10 is created
 * & assiged values as null

 * elemetntdata = [null, null, null,....10 Objects]
 * modcount = 0, no modifications performed
 * size=0
 * */
 ArrayList<String> list = new ArrayList<>();

 /*adding first element, add("one");
 * elementdata=["one,null, null, null"]
 * modcount = 1
 * Size = 1 *
 * */
 list.add("One");
 list.add("Two");
 list.add("Three");
 System.out.println(list);
}
}

• We use collections to hold & transfer objects from one location to another location. To provide

support for this requirement every collection class implements Serializable & Cloneable interfaces

• ArrayList and Vector classes implements RandomAccess interface, so that any random element we

can access with same speed. RandomAccess is a marker interface & doesn’t have any methods

• Insertion/Deletion is middle ArrayList is the Worst choice. For retrieval Best Choice

• In every collection class toString() is overridden to print data readable format [ob1, ob2, ob3]

199 | P A G E Satya Kaveti

To get any class internal implementation, open eclipse, write class name, CTRL+Click – It will open

compiled class file for reference.

LinkedList– Internal implementation

• Underlying data structure is DoubleLinkedList

• Insertion order is preserved

• Duplicates are allowed

• Heterogeneous objects are allowed

• null insertion is allowed

• LinkedList implements Serializable & Cloneable interfaces but not RandomAccess

• Best Choice for Insertion/Deletion, Worst for Retrieval operation.

• It maintains the index also. But here index is LinkedList node index number.
void addFirst(Object o)

void addLast(Object o)

Object set(int index, E element)

Object getFirst()

Object getLast()

Object get(int index)

Object removeFirst()

Object removeLast()

public class LinkedListDemo {
 public static void main(String[] args) {
 LinkedList l = new LinkedList<>();
 l.add("A");
 l.add(10);
 l.add("A");
 l.add(null);
 System.out.println(l); // [A, 10, A, null]

 l.set(0, "Satya"); // replaces
 System.out.println(l); // [Satya, 10, A, null]

 l.add(0, "Johnny"); // just add
 System.out.println(l); // [Johnny, Satya, 10, A, null]

 l.removeFirst();
 System.out.println(l); // [Satya, 10, A, null]
 System.out.println(l.getFirst());// Satya
 }
}

Implementation

1.LinkedList class in Java implements List and Deque interfaces and LinkedList implements it using

Doubly LinkedList

2.In the implementation of the LinkedList class in Java there is a private class Node which provides the

structure for a node in a doubly linked list.

• It has “item” variable for holding the value

• and two reference to Node class itself for connecting to next and previous nodes.

private static class Node<E> {
 E item;
 Node<E> next;
 Node<E> prev;

200 | P A G E Satya Kaveti

 Node(Node<E> prev, E element, Node<E> next) {
 this.item = element;
 this.next = next;
 this.prev = prev;
 }
}

3.Reference to previous element of first node and Reference to next element of last node are null as

there will be no elements before the first node and after the last node.

4.we have two Node variables - first , last. These will update the first & last element each time when we

trying to add elements.

5. You can insert the elements at both the ends and also in the middle of the LinkedList.

6.If you call the regular add() method or addLast() method internally linkLast() method is called

/** * Links e as last element. */
 void linkLast(E e) {
 final Node<E> l = last;
 final Node<E> newNode = new Node<>(l, e, null);
 last = newNode;
 if (l == null)
 first = newNode;
 else
 l.next = newNode;
 size++;
 modCount++;
 }

6.If you call addFirst() method internally linkFirst() method is called.

private void linkFirst(E e) {
 final Node<E> f = first;
 final Node<E> newNode = new Node<>(null, e, f);
 first = newNode;
 if (f == null)
 last = newNode;
 else
 f.prev = newNode;
 size++;
 modCount++;
 }

5.Insertion and removal operations in LinkedList are faster than the ArrayList. Because in LinkedList,

there is no need to shift the elements after each insertion and removal, because we only add elements at

First or Last no in-between. only references of next and previous elements need to be changed.

6.Retrieval of the elements is very slow in LinkedList as compared to ArrayList. Because in LinkedList,

you should traverse from beginning or end (whichever is closer to the element) to reach the element.

public class LinkedListDemo {
 public static void main(String[] args) {

 LinkedList<String> list = new LinkedList<>();
 list.add("One");
 list.add("Two");
 list.add("Three");
 System.out.println(list);
 }
}

201 | P A G E Satya Kaveti

Vector– Internal implementation (Synchronized - Same as ArrayList)

• The underlying data structure is ResizableArray or Growable Array

• Duplicates are allowed

• Insertion order is preserved

• Heterogeneous (different datatypes) Objects are allowed

• null is insertion is allowed

• Vector implements Serializable, Cloneable & RandomAccess

• Vector is Synchronized

Add / Remove Find Special

addElement(Obejct o)

removeElement(Object o)

removeElementAt(int index)

removeAllElements()

Object elementAt(int index)

Object firstElement()

Object lastElemet()

Int size()

Int capacity()//to know

default/incremental capacity

Enumeration elements()

public class VectorDemo {
 public static void main(String[] args) {
 Vector v = new Vector();
 for (int i = 1; i <= 10; i++) {

202 | P A G E Satya Kaveti

 v.addElement(i);
 }
 System.out.println("Before adding 11th element -Capacity:" + v.capacity()); //10

 v.addElement("Satya");
 System.out.println(v);
 System.out.println("After adding 11th element -Capacity:" + v.capacity());
 System.out.println("size : " + v.size());
 }
}
Before adding 11th element -Capacity:10
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, Satya]
After adding 11th element -Capacity:20
size: 11

Stack– Internal implementation

The Stack class represents a last-in-first-out (LIFO) stack of objects. It

extends class Vector with five operations (below 5 methods) that allow a

vector to be treated as a stack

Object push(Object o) -Insert an object into top of the stack

Object pop() -Removes & returns from top of the stack

Object peak() -Just returns Object from top of the stack

boolean empty() - returns TRUE if stack is empty

int search(Object o) – returns offset if available otherwise -1

• Uses Growable Array, initial capacity as 10, same as ArrayList

• Adding item in Stack is called PUSH.

• Removing item from stack is called POP.

• Push and pop operations happen at Top of stack.

• Stack follows LIFO (Last in first out) - means last added element is removed first from stack

• Push - O(1) [as we push element at Top of Stack in java]

• Pop - O(1) [as popping is also done at Top of Stack in java]

http://www.smlcodes.com/wp-content/uploads/2016/09/image7-4.png

203 | P A G E Satya Kaveti

public class StackDemo {
 public static void main(String[] args) {
 Stack s = new Stack();
 s.push("A");
 s.push("B");
 s.push("C");
 System.out.println(s);// [A, B, C]

 System.out.println(s.search("A"));// 3
 System.out.println(s.search("X"));// -1

 s.pop();
 System.out.println(s);//[A, B]
 }
}
[A, B, C]
3
-1

ListIterator is subclass of List. so all the methods which are available in Iterator, also there in ListIterator.

We must follow 3 steps to use Cursors in our application

1. Get all elements and save it in cursor(iterator) object. Ex: Iterator i= list.iterator()

2. Check is next/previous element is exist or not Ex: i.hasNext()

3. Get the element

Enumeration (vector/stack) Iterator(ArrayList) ListIterator (LinkedList)

Can iterate over a Collection

Remove operation not allowed

Add operation not allowed

Backward direction not allowed

1. Enumeration elements()

Ex. Enumeration = v.elemetnts()

Can iterate over a Collection

Remove operation allowed

Add operation not allowed

Backward not allowed

1. Iterator iterator()

Ex. Iterator = l.iterator()

Can iterate over a Collection

Remove operation allowed

Add operation allowed

Backward direction allowed

1. ListIterator listIterator()

Ex. ListIterator = l.listIterator ()

204 | P A G E Satya Kaveti

2.boolean hasMoreElements()

3.E nextElement()

2.boolean hasNext()

3.E next()

 void remove()

2. boolean hasNext()

 boolean hasPrevious()

add(E e)

nextIndex()

previous()

previousIndex()

remove()

next()

set(E e)

public class VectorEnumation {
public static void main(String[] args) {
 Vector v = new Vector();
 for (int i = 1; i <= 10; i++) {
 v.addElement(i);
 }

Enumeration e = v.elements();
while (e.hasMoreElements()) {
 Object s = (Object) e.nextElement();
 System.out.print(s + ",");
 }
 }
}

1,2,3,4,5,6,7,8,9,10,

public class ArrayListIterator {
public static void main(String[] a) {
 ArrayList l = new ArrayList<>();
 l.add("A");
 l.add(10);
 l.add("A");
 l.add(null);

Iterator i= l.iterator();
while (i.hasNext()) {
 Object s = (Object) i.next();
 System.out.print(s+","); }
 }
}

A,10,A,null,

Map

• Entry Interface: One Row (pair of <K,V>) treated as an Entry

205 | P A G E Satya Kaveti

• Object put(Object Key, Object value) – To add one <key, value> pair to the Map.

if the <key> is not present, then Value will be placed against <Key> & returns null.

if the <key> is already present then oldvalue will be replaced with new value & returns old value.

• Object putAll(Map m)

• Void putAll(Map m)

• Object get(Object key)

• Object remove(Obejct key)

• boolean containsKey(Object Key)

• boolean containsValue(Object value)

• boolean isEmpty()

• int size()

• void clear

HashMap – Internal implementation (HashTable)

• The underlying data structure is HashTable(Bucket) + LinkedList(Storing Item)

• Insertion order is not preserved & it is based on Hashcode of <Keys>

• Duplicate keys are NOT allowed, but values can be duplicated.

• Heterogeneous objects are allowed for both Key & Value

• null is allowed for key (only once)

• null is allowed for Values (any no. of times)

• HashMap implements Serializable & Cloneable interfaces but not RandomAccess

• HashMap is the best choice for Searching operations

Constructors

• HashMap h = new HashMap () //16 capacity, Def. fill ratio = 0.75

Creates an empty Object with def. initial capacity 16 & def. fill ratio 0.75

• HashMap h = new HashMap (int intialcapacity) // Def. fill ratio = 0.75

• HashMap h = new HashMap (int intialcapacity, float fillRatio)

• HashMap h = new HashMap (Map m)

public class HashMapDemo {
 public static void main(String[] args) {
 HashMap h = new HashMap();
 h.put("one", "Satya");
 h.put("two", "Ravi");
 h.put("three", "Rakesh");
 h.put("four", "Surya");
 System.out.println(h);// No Insertion Order

 System.out.println("adding existing key:" + h.put("two", "Madhu"));
 System.out.println("All keys: " + h.keySet());
 System.out.println("All Values: " + h.values());

 System.out.println("Both Key-Values\n---------");
 Set s = h.entrySet();
 Iterator it = s.iterator();
 while (it.hasNext()) {

206 | P A G E Satya Kaveti

 Map.Entry m = (Map.Entry) it.next();
 System.out.println(m.getKey() + "\t : " + m.getValue());
 }
 }
}
{four=Surya, one=Satya, two=Ravi, three=Rakesh}
adding existing key: Ravi
All keys : [four, one, two, three]
All Values : [Surya, Satya, Madhu, Rakesh]
Both Key-Values

four : Surya
one : Satya
two : Madhu
three : Rakesh

• Initial Capacity (16): This is the capacity of HashMap to store number of key value pairs

• Load Factor/Fill ratio (0.75): is a parameter responsible to determine when to increase size of

HashMap.

• Threshold value(cap*0.75=12): When number of key value pairs is more than threshold value, then

HashMap is resized with increased capacity. Here Threshold value is 12

public class HashMapDemo {
 public static void main(String[] args) {
 HashMap<String, String> map = new HashMap<>();

 map.put("one", "AAA");
 map.put("two", "BBB");
 map.put("three", "CCC");
 map.put("four", "DDD");
 System.out.println(map);
 }
}

{ four=DDD, one=AAA, two=ZZZ, three=CCC} //insertion ordered not preserved

1.On this line of code, it will create the HashMap object with,

HashMap<String, String> map = new HashMap<>();

• Default Bucket size is 16, with Entry table[] of 16 buckets

• load factor as 0.75

• initializes with null values

http://www.thejavageek.com/2016/03/12/working-of-hashmap-in-java/

207 | P A G E Satya Kaveti

2.Each entry into HashMap is an Entry Object, which contains [hashcode, key, value, next] data fields.

static class Entry<K,V> implements Map.Entry<K,V> {
 final int hash;
 final K key;
 V value;
 Entry<K,V> next;
 }

Now we are ready, by adding map.put("one", "AAA"); following actions will be performed

public V put(K key, V value)
{
 if (key == null)
 return putForNullKey(value); → hashcode =0, bucketlocation =0

 int hash = hash(key.hashCode()); → 1.Gets hashcode
 int i = indexFor(hash, table.length); → 2.Gets Bucket location

//3. Loop all Map elements, Compare new Key with existing keys
 for (Entry<K,V> e = table[i]; e != null; e = e.next)
 {
 Object k;
 if (e.hash == hash && ((k = e.key) == key || key.equals(k))) →3.1 If Key already Exist
 {
 V oldValue = e.value;
 e.value = value;
 e.recordAccess(this);
 return oldValue;
 }
 }
 modCount++;
 addEntry(hash, key, value, i); →3.2 If Key not Exist already, add item to Map & Return null
 return null;
 }

1.Using hashcode() method

208 | P A G E Satya Kaveti

• First, it checks for the if the key given is null or not, if the given key is null it will be stored in the

‘0’th position as the hashcode of null will be 0(hashcode=0), & if key is not null, then it gets the

hashcode of the Key

static final int hash(Object key) {
 int h;
 return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

• Now indexFor(hash, table.length) function is called to calculate exact index(Bucket) position for

storing the Entry object. It is a BitWise &(and) Operation, like Bucket = (hashcode) &

(tablecapacity), for the above code bkt = 110183 &15 = 7(7th bucket)

 Basically, following operation is performed to calculate index.

index = hashCode(key) & (table.lenght).

https://www.miniwebtool.com/bitwise-calculator/

2.Using equals () method

• Now it compares the current key value with existed key values by newkey.equals(oldkey) method, if

found it updates the value & returns oldValue. if not found it will create the new node by

addEntry(hash, key, value, i);and add it to the calculated Bucket location(7)

we already know how Entry objects are stored in a bucket and what happens in the case of Hash Collision.

it is easy to understand what happens when key object is passed in the get(key) method of the HashMap

to retrieve a value.

1) Using the key (passed in the get() method) again hash value will be calculated to determine the

bucket location (index) , where that Entry object is stored.

2) In case there are more than one Entry object with in the same bucket location (stored as a linked-

list) equals() method will be used to find out the correct key.

3) Once exact key is found, get() method will return the value object stored in the Entry object

public V get(Object key)
{
 if (key == null)
 return getForNullKey();
 int hash = hash(key.hashCode());
 for (Entry<K,V> e = table[indexFor(hash, table.length)];e != null;e = e.next)
 {
 Object k;
 if (e.hash == hash && ((k = e.key) == key || key.equals(k)))
 return e.value;
 }
 return null;
 }

https://www.miniwebtool.com/bitwise-calculator/
https://www.miniwebtool.com/bitwise-calculator/

209 | P A G E Satya Kaveti

If two key objects are returns same hashcode, then which object should insert at a given Bucket is known

as “Collision”. So, in case of collision, Entry objects are stored in LinkedList form. The address of the next

element will be stored in previous element.

• When the number of items in map, crosses the Load factor limit (12 if size=16) at that time HashMap

doubles its capacity and hashcode is re-calculated of already stored elements for even distribution

of key-value pairs across new buckets.

• So, for each existing key-value pair, hashcode is re-calculated with increased capacity as a

parameter, which results in either placing the item in same bucket or in different bucket.

• Rehashing is done to distribute items across the new length HashMap, so that get() and put()

operation time complexity remains O(1).

• HashMap maintain complexity is O(1). This is same while inserting data in and getting data

from HashMap. But for 13th key-value pair, put request will no longer be O(1), because as soon as

map will realize that 13th element came in, that is 75% of map is filled.

210 | P A G E Satya Kaveti

Points to note -

• HashMap works on the principal of hashing.

• HashMap uses the hashCode() method to calculate a hash value. Hash value is calculated using

the key object. This hash value is used to find the correct bucket where Entry object will be stored.

• HashMap uses the equals() method to find the correct key whose value is to be retrieved in case

of get() and to find if that key already exists or not in case of put().

• Hashing collision means more than one key having the same hash value.in that case Entry objects

are stored as a linked-list within a same bucket.

• Within a bucket, values are stored as Entry objects which contain both key and value.

• On High hash Collisions, java people observed that LinkedList is very slow.

• In Java 8 hash collision uses BalancedTree instead of LinkedLists after a certain threshold is

reached while storing values. This improves the worst case performance from O(n) to O(log n).

• There is a performance improvement for HashMap objects where there are lots of collisions in the

keys by using BalancedTree rather than LinkedLists to store map entries

• The principal idea is that once the number of items in a hash bucket grows beyond a certain

threshold, that bucket will switch from using a LinkedLists of entries to a BalancedTree. In the

case of high hash collisions, this will improve worst-case performance from O(n) to O(log n).

How to avoid Hash Collision

https://www.journaldev.com/21095/java-equals-hashcode

If you are planning to use a class as HashMap key, then it’s must to override both equals() and

hashCode() methods.

Let’s see what happens when we rely on default implementation of equals() and hashCode() methods and

use a custom class as HashMap key.

@Data
@AllArgsConstructor
@NoArgsConstructor
public class DataKey {

 private int id;
 private String name;

 public static void main(String[] args) {
 Map<DataKey, Integer> map = new HashMap<DataKey, Integer>();
 DataKey key = new DataKey(1, "AAA");
 map.put(key, 100);
 System.out.println("Key 1 : "+key.hashCode());

https://www.journaldev.com/21095/java-equals-hashcode

211 | P A G E Satya Kaveti

 //Create Key object with Same Data
 DataKey key2 = new DataKey(1, "AAA");
 System.out.println("Key 2 : "+key2.hashCode());
 //We are trying to get VALUE , by Passing same data Key Object as KEY
 Integer value = map.get(key2);
 System.out.println(value);
 }
}

When we run above program, it will print null. Because notice that hash code values of both the objects

are different and hence value is not found.

So to avoid this we need to return

• same hashcode() if data for two objects are same.

• Override equals() method return true only if all data elements are matched.

public class DataKey {
 private int id;
 private String name;

 public boolean equals(Object ob) {
 if(ob == null)
 return false;

 if(this == ob)
 return true; // Reference equality

 if(!(ob instanceof DataKey))
 return false;

 DataKey obj = (DataKey) ob;
 return (name.equals(obj.getName())) && (id == obj.id);
 }

 public int hashCode() {
 return name.hashCode() ^ id;
 }
}

for same data hashcode() returns same hashcode. Now we will reduce the hash collision, if object with

same data is trying put as key, will we just update value – because key with same data already exists.

LinkedHashMap – Internal implementation

• LinkedHashMap is just an extension of HashMap , internally uses HashTable+DoublyLinkedList

• It has two references head and tail which will keep track of the latest object inserted and the first

object inserted

1.Each node in a LinkedHashMap needs to have information about previous node and next node as the

order in which they are accessed in important. The structure is as follows.

class Entry<K,V> extends HashMap.Node<K,V> {
 Entry<K,V> before, after;
 Entry(int hash, K key, V value, Node<K,V> next) {
 super(hash, key, value, next);
 }

https://docs.oracle.com/javase/8/docs/api/java/util/LinkedHashMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html
http://www.thejavageek.com/wp-content/uploads/2016/06/NodeStructure.png

212 | P A G E Satya Kaveti

2.After inserting map.put("one", "AAA"); Bucket with 16 capacity is created, hashcode & index will be

calculated. Here one is added, head and tail will refer to it.

3.On adding map.put("two", "BBB");, inserted in 8th bucket & it is next to “one”, so head → one, tail

→ two, before & after will linked, like this all elements will be added & Insertion order will be marinated.

4.If any collision, new element will be added in same Bucket location with LinkedList& points to next.

213 | P A G E Satya Kaveti

public class HashMapDemo {
 public static void main(String[] args) {
 LinkedHashMap<String, String> map = new LinkedHashMap<>();
 map.put("one", "AAA"); //7 -> []
 map.put("two", "BBB"); //
 map.put("two", "ZZZ");
 map.put("three", "CCC");
 map.put("four", "DDD");
 map.put(null, "XXX");

 System.out.println(map);
 }
}
{one=AAA, two=ZZZ, three=CCC, four=DDD, null=XXX}

So here Insertion Order is preserved, elements the order they added, same order they will store.

public class LinkedHashMapDemo {
 public static void main(String[] args) {
 LinkedHashMap h = new LinkedHashMap();
 h.put("one", "Satya");
 h.put("two", "Ravi");
 h.put("three", "Rakesh");
 h.put("four", "Surya");
 System.out.println(h);// Insertion Order Preserved

 System.out.println("adding exsting key:" + h.put("two", "Madhu"));
 System.out.println("All keys : " + h.keySet());
 System.out.println("All Values : " + h.values());
 System.out.println("Both Key-Values\n---------");

 Set s = h.entrySet();
 Iterator it = s.iterator();
 while (it.hasNext()) {
 Map.Entry m = (Map.Entry) it.next();
 System.out.println(m.getKey() + "\t : " + m.getValue());
 }
 }
}
{one=Satya, two=Ravi, three=Rakesh, four=Surya}
adding exsting key:Ravi
All keys : [one, two, three, four]
All Values : [Satya, Madhu, Rakesh, Surya]
Both Key-Values

one : Satya
two : Madhu
three : Rakesh

TreeMap – Internal implementation

• Underlying D.S is RED-BLACK TREE

• Insertion order is NOT preserved & it is based on some sorting order of KEYS

• Duplicate keys are NOT allowed, but values can be duplicated

• If we are depending on default Natural Sorting Order, then KEYS should be Homogeneous &

Comparable otherwise we will get Runtime exception saying ClassCastException

• If we are defining our Own Sorting Order by Comparator, then KEYS should need not be

Homogeneous & Comparable. We can take Heterogeneous & non- comparable Objects also.

214 | P A G E Satya Kaveti

1) Every node has a color either red or black.

2) Root of tree is always black.

3) No two adjacent red nodes (A red node cannot have a

red parent or red child).

4) Every path from root to a NULL node has same

number of black nodes.

Constructors
TreeMap h = new TreeMap () //Default. Sorting Order
Creates an Empty TreeMap Object, all elements inserted in Default Natural Sorting Order

TreeMap h = new TreeMap (Comparator c) //Customized. Sorting Order
Creates an Empty TreeMap Object, all elements inserted in Customized Natural Sorting Order

TreeMap h = new TreeMap (Map c)

TreeMap h = new TreeMap (SortedMap s)

1.TreeMap is based on tree data structure. Each node in tree will have three references

parent(key,value), right and left element.

215 | P A G E Satya Kaveti

• The left element will always be logically less than parent element.

• The right element will always be logically greater than OR equal to parent element

static final class Entry<K,V> implements Map.Entry<K,V> {
 Entry<K,V> left;
 Entry<K,V> right;
 Entry<K,V> parent;
 K key;
 V value;
}

2. Comparison of Objects is done by natural order i.e. those object who

implement Comparable(default) interface and override compareTo(Object obj) method. Based on the

return value,

• If obj1.compareTo(obj2), if obj1<obj2 then returns negative number

• If obj1.compareTo(obj2), if obj1>obj2 then returns positive number

• If obj1.compareTo(obj2), if obj1==obj2 then returns zero

3.When we use put(K,V) method, it checks if root is pointing anywhere or not. if not, it makes the

instance of Entry<K,V> and point to root;

4.The constructor of Entry<K,V> takes key, value and parent. In this case parent is null;

5.For the next time we enter using put(K,V) it first identifies the comparison mechanism to use.

6.First it checks the Comparator class is present or not. (This class is passed when creating the instance of

TreeMap). If not present it uses the Key's Comparable implementation.

7.It then traverse through root and compares each node with the node entered and depending upon the

comparison places the node either left or right of the parent node.

treeMap.put(1, "one"); //1

there are no elements in it. So, 1 is the first object being inserted as key. This is treated as root node

treeMap.put(5, "five"); //2

Now, 5 is logically greater than 1 and hence according to our rules,

• 5 will be placed to the right of 1.

• 1 will be parent of 5.

216 | P A G E Satya Kaveti

treeMap.put(3, "three"); //3
treeMap.put(2, "two"); //4
treeMap.put(4, "four"); //5, after inserting all these final structure will be

IdentityHashMap

It is exactly same as HashMap (including methods & constructors) except following differences

• In the case of Normal HashMap JVM will use method to identify Duplicate keys,

which is meant for Content comparison

217 | P A G E Satya Kaveti

• But, In the case of IdentityHashMap JVM will use operator to identify Duplicate keys, which is

meant for reference comparison or address comparison

 is for reference comparison or address comparison

 is for content comparison

HashMap Example IdentityHashMap Example

public class IdentityHashMapDemo {

 public static void main(String[] a)

{

 HashMap m = new HashMap();

 m.put(new Integer(10), "Satya");

 m.put(new Integer(10), "Surya");

 System.out.println(m);

// {10=Surya}

}

}

{10=Surya}

public class IdentityHashMapDemo {

public static void main(String[] args)

{

IdentityHashMap m = new IdentityHashMap();

 m.put(new Integer(10), "Satya");

 m.put(new Integer(10), "Surya");

 System.out.println(m);

// {10=Satya, 10=Surya}

 }

}

{10=Satya, 10=Surya}

WeakHashMap

It is exactly same as HashMap except following difference

• In the case of HashMap even though Object doesn’t have any reference it is NOT eligible for

garbage collection, if it is associated with HashMap. That means HashMap dominates Garbage

collector.

• But the case of WeakHashMap if Object doesn’t have any references it is eligible for even

though object associated with WeakHashMap. that means Garbage collector dominates

WeakHashMap

class Temp {
 @Override
 public String toString() {
 return "Temp";
 }
 @Override
 protected void finalize() throws Throwable {
 System.out.println("Finalize Called");
 }
}

public class HashMapdemo {
 public static void main(String[] args) throws InterruptedException {
 HashMap m = new HashMap();
 Temp t = new Temp();
 m.put(t, "Satya");

218 | P A G E Satya Kaveti

 System.out.println(m);
 t=null;
 System.gc();
 Thread.sleep(5000);
//main Thread Sleeping for 5 seconds
//Garbage collector takes control for 5 seconds
 System.out.println(m);
 }
}

{Temp=Satya}
{Temp=Satya}

In the above example Temp object is not eligible for gc() because it is associated with HashMap.in this

case output is {Temp=Satya} {Temp=Satya}

public class WeakHashMapdemo {
 public static void main(String[] args) throws InterruptedException {
 WeakHashMap m = new WeakHashMap();
 Temp t = new Temp();
 m.put(t, "Satya");
 System.out.println(m);
 t=null;
 System.gc();
 Thread.sleep(5000);
 System.out.println(m);
 }
}

{Temp=Satya}
Finalize Called
{}

In the above example Temp object is eligible for gc() because it is associated with HashMap.in this case

output is {Temp=Satya} Finalize Called {}

Legacy Classes on Map

The Dictionary class is the abstract parent of any class, such as Hashtable, which maps keys to values.

Every key and every value is an object.

1.Hashtable
• Underlying D.S is HashTable for is Hashtable

• Insertion order is not preserved & it is based on Hashcode of keys

• DUPLICATE keys are NOT allowed & Values can be duplicated

• Heterogeneous objects are allowed for both keys &values

219 | P A G E Satya Kaveti

• null is NOT allowed for both key& value. Otherwise, we will get NullPointerException at runtime

• It implements Serializable, Cloneable interfaces but not RandomAccess

• All methods are Synchronized, so Hashtable is Thread-Safe

• Hashtable is best choice for Search Operation

1. Hashtable h = new Hashtable () //16 capacity, Def. fill ratio = 0.75

Creates an empty Object with def. initial capacity 16 & def. fill ratio 0.75

2. Hashtable h = new Hashtable (int intialcapacity) // Def. fill ratio = 0.75

3. Hashtable h = new Hashtable (int intialcapacity, float fillRatio)

4. Hashtable h = new Hashtable (Map m)

class Test {
 int i;
 Test(int i) {
 this.i = i;
 }
 public int hashCode() {
 return i;
 }
 public String toString() {
 return i + "";
 }
}
public class HashtableDemo {
 public static void main(String[] args) {
 Hashtable h = new Hashtable();
 h.put(new Test(5), "A");
 h.put(new Test(2), "B");
 h.put(new Test(6), "C");
 h.put(new Test(15), "D");
 h.put(new Test(23), "E");
 h.put(new Test(16), "F");
 System.out.println(h);
 }
}
{6=C, 16=F, 5=A, 15=D, 2=B, 23=E}

HashMap Hashtable

HashMap is non-synchronized

Performance is high because no threads waiting

nulls allowed for both <Key & Value>

Hashtable is synchronized

Performance is Low because threads may wait

nulls is NOT allowed for both <Key & Value>

220 | P A G E Satya Kaveti

Introduced in 1.2 version Introduced in 1.0 version (Legacy)

By default, HashMap is non-synchronized but we can get Synchronized version of HashMap by using

synchronizedMap() of collections class

HashMap m = new HashMap()

 Map m1 = Collections.synchronizedMap(m)

2 Properties
In our project if anything which changes frequently like Database names, username, password etc. we use

properties file to store those & java program used to read properties file

Properties p = new Properties ()

Methods

1. String getProperty(String name);

2. String setProperty(String name, value);

3. Enumaration propertyNames();

4. void load(InputStream is)

Load properties from properties file into java properties Object

5. void store(OutputStream is, String comment)

Store java properties Object into properties file

uname=satya //abc.properties before
port=8080
public class PropertiesDemo {
public static void main(String[] args) throws Exception {
 Properties p = new Properties();
 FileInputStream fis = new FileInputStream("abc.properties");
 p.load(fis);
 System.out.println(p);
 System.out.println("Uname : "+p.getProperty("uname"));

 p.setProperty("port", "8080");
 FileOutputStream fos = new FileOutputStream("abc.properties");
 p.store(fos, "Port Number comment added");
}
}
#Port Number comment added //abc.properties After
#Mon Sep 12 20:38:33 IST 2016
uname=satya
port=8080
pwd=smlcodes

Multiple values in java.util.Properties

foo=1,2
String[] foos = properties.getProperty("foo").split(",");

Set

• Set is child interface of collection

• If we want to represent group of individual objects as a single entity where duplicates are Not

allowed & insertion order Not be preserved, then we should go for Set

221 | P A G E Satya Kaveti

• Set doesn’t have any new methods & we have to use collection interface methods only.

• In All Hash related collections insertion is based on Hashcode.so no insertion order preserved.

HashSet – Internal implementation

• The underlying data structure is Hashtable, internally uses HashMap

• Duplicate Objects are Not Allowed

• Insertion Order is Not preserved & it is based hashcode of Objects

• null Insertion is possible (Only once), Heterogeneous Objects are allowed

• Implements Serializable & Cloneable but not RandomAccess Interface

• HashSet is the Best Choice for Search Operation

• In HashSet Duplicates are not allowed. If we are trying to insert duplicates then it won’t get

any Compile time or Runtime Error and add() method simply returns FALSE

Constructors

HashSet h = new HashSet () //16 capacity, Def. fill ratio = 0.75

Creates an empty Object with def. initial capacity 16 & def. fill ratio 0.75

HashSet h = new HashSet (int intialcapacity) // Def. fill ratio = 0.75

HashSet h = new HashSet (int intialcapacity, float fillRatio)

HashSet h = new HashSet (Collection c)

1.HashSet uses HashMap internally to store its objects. Whenever you create a HashSet object,

one HashMap object associated with it is also created.

public HashSet()
{
 map = new HashMap<>(); //Creating internally backing HashMap object
}

public HashSet(int initialCapacity, float loadFactor)
{

222 | P A G E Satya Kaveti

 map = new HashMap<>(initialCapacity, loadFactor);
}

2.The elements you add into HashSet are stored as keys of this HashMap object. The value associated

with those keys will be a constant (PRESENT).

Add Method
• add() method of HashSet class internally calls put() method of backing HashMap object by passing

the element you have specified as a key and constant “PRESENT” as its value.

private static final Object PRESENT = new Object();
public boolean add(E e)
{

return map.put(e, PRESENT)==null;
}

• Here hash function is calculated using value we are trying to insert. That’s why only unique values are

stored in the HashSet.

• When element is added to HashSet using add(E e) method internally HashSet calls put() method of

the HashMap where the value passed in the add method becomes key in the put() method. A dummy

value “PRESENT” is passed as value in the put() method.

public class HashSetDemo {
public static void main(String[] args) {
 HashSet h = new HashSet();
 h.add("A");
 h.add("B");
 h.add("C");
 h.add(10);
 h.add(null);
 System.out.println(h.add("A"));//False
 System.out.println(h);

223 | P A G E Satya Kaveti

}
}
false
[null, A, B, C, 10]

LinkedHashSet – Internal implementation

• LinkedHashSet is an extended version of HashSet. HashSet doesn’t follow any order where as

LinkedHashSet maintains insertion order.

• HashSet uses HashMap object internally to store its elements where as LinkedHashSet

uses LinkedHashMap object internally to store and process it’s elements

• LinkedHashSet, elements you insert are stored as keys of LinkedHashMap object. The values of

these keys will be the same constant i.e “PRESENT“.

• The insertion order of elements into LinkedHashMap are maintained by adding two new fields to

this class. They are before and after. These two fields hold the references to previous and next

elements. These two fields make LinkedHashMap to function as a doubly linked list.

public class HashSetDemo {
public static void main(String[] args) {
 LinkedHashSet h = new LinkedHashSet();
 h.add("A");
 h.add("B");
 h.add("C");
 h.add(10);
 h.add(null);

 System.out.println(h.add("A"));
 System.out.println(h);
}
}
false
[A, B, C, 10, null]

224 | P A G E Satya Kaveti

TreeSet – Internal implementation
 Set
 |

SortedSet
 |
TreeSet

java.util.SortedSet (Interface)
• SortedSet is the child interface of Set

• If we want to represent a group of individual objects according to some sorting order without

duplicates, then we should go for SortedSet.

SortedSet Interface defines following 6 methods.

1. Object first()

2. Object last()

3. SortedSet headSet(Object obj)

4. SortedSet tailSet(Object obj)

5. SortedSet subSet(Object start, Object end)

6. Comparator comparator()

225 | P A G E Satya Kaveti

Used to get Default Natural sorting order

• Numbers ➔ Ascending order [1, 2, 3, 4, 5….]

• Strings ➔ Alphabetical Order [A, B, C, D, E…a,b,c,d …] (Unicode values)

• Underlying D.S is Red-Black Tree

• Duplicate objects are Not Allowed

• Insertion order Not Preserved but we can sort elements

• Heterogeneous Objects are Not Allowed. if try it throws ClassCastException at Runtime

• Non-Comparable objects are not allowed. If we try it throws : java.lang.ClassCastException:

java.lang.StringBuffer cannot be cast to java.lang.Comparable

• null Insertion allowed (Only once)

• TreeSet implements Serializable & Cloneable but not RandomAccess

• All objects are inserted based on some sorting order either default or customized sorting order.

Constructors

TreeSet h = new TreeSet () //Default. SortingOrder

Creates an Empty TreeSet Object, all the elements inserted according to Default Natural Sorting Order

TreeSet h = new TreeSet (Comparator c) //Customized. SortingOrder

Creates an Empty TreeSet Object, all the elements inserted according to Customized Sorting Order

TreeSet h = new TreeSet (Collection c)

TreeSet h = new TreeSet (SortedSet s)

public class TreeSetDemo {
public static void main(String[] args) {
 TreeSet t = new TreeSet();
 t.add("A");
 t.add("N");
 t.add("Z");
 t.add("h");
 t.add("X");
 t.add("i");
 //t.add(10);
 //Exception in thread "main" java.lang.ClassCastException:
 //java.lang.String cannot be cast to java.lang.Integer

 //t.add(null); // java.lang.NullPointerException
 System.out.println(t);
}
}
[A, N, X, Z, h, i]

226 | P A G E Satya Kaveti

TreeSet is like HashSet which contains the unique elements only but in a sorted manner.

TreeSet uses TreeMap internally to store its elements.

public class TreeSet<E> extends AbstractSetimplements NavigableSet,Cloneable, Serializable
{
 private static final Object PRESENT = new Object();

 public TreeSet() {
 this(new TreeMap<E, Object>());
 }
 public boolean add(E e) {
 return map.put(e, PRESENT) == null;
 }
}

Comparable & Comparator
public class TreeSetStringBuffer {
public static void main(String[] args) {
 TreeSet t = new TreeSet();
 t.add(new StringBuffer("A"));
 t.add(new StringBuffer("X"));
 t.add(new StringBuffer("O"));
 t.add(new StringBuffer("L"));
 System.out.println(t);
}
}

Exception in thread "main" java.lang.ClassCastException: java.lang.StringBuffer cannot be cast to
java.lang.Comparable

• If we are depending on Def. Natural Sorting Order objects should be Homogeneous (same type

objects) & Comparable. Otherwise we will get Runtime Exception java.lang.ClassCastException

public static void main(String[] args) {
 // List list = new ArrayList(); //[1, 2, 3, 4] - No Error
 // Set list = new HashSet(); //[1, 2, 3, 4] - No Error
 Set list = new TreeSet(); // [1, 2, 3, 4] - Error

 list.add("1");
 list.add("2");
 list.add("3");
 list.add(4);
 System.out.println(list);
 }
Exception in thread "main" java.lang.ClassCastException: java.lang.String cannot be cast to
java.lang.Integer
 at java.lang.Integer.compareTo(Integer.java:52)

• An object is said to be comparable if and only if corresponding class implements Comparable

interface.java.lang.String & all wrapper classes (Int, Float, Byte) already implements

Comparable interface

public final class java.lang.String implements java.io.Serializable, java.lang.Comparable

• java.lang.StringBuffer doesn’t implements comparable interface

public final class java.lang.StringBuffer extends java.lang.AbstractStringBuilder implements
java.io.Serializable,java.lang.CharSequence

So it throws Exception in thread "main" java.lang.ClassCastException: java.lang.StringBuffer
cannot be cast to java.lang.Comparable

• If we Take EmpBo, if we pass employee list Objects to Collection.sort(EmpBo) method, it will

throw Error, because it only accepts objects of Comparable types only.

http://netjs.blogspot.com/2015/11/treemap-in-java.html

227 | P A G E Satya Kaveti

Exception in thread "main" java.lang.Error: Unresolved compilation problem:
The method sort(List<T>) in the type Collections is not applicable for the args.(List<Employee>)

We have Two ways to provide Sorting order for StringBuffer & Other classes which are not implementing

Comparable Interface

1. Implement java.lang.Comparable interface & override int compareTo(Object)

2. Implement java.util.Comparator interface & override int compare(Object,Object)

• It provides single sorting sequence only i.e. you can sort the elements on based on single data

member only. For example, it may be rollno, name, age or any one of them, not all else.

• Comparable is an interface defining a strategy of comparing an object with other objects of the

same type. This is called the class’s “natural ordering”.so we need to define CompareTo() method

• We use public int compareTo(Object obj) to compare the current object with the specified

object.

public class ComparableDemo {
 public static void main(String[] args) {
 System.out.println("A".compareTo("Z")); // 1-26 = -25
 System.out.println("Z".compareTo("C")); // 26-3 = 23
 System.out.println("A".compareTo("A")); // 1-1 = 0
 // System.out.println("A".compareTo(null)); //R.E NPE
 }
}

While adding Objects into TreeSet JVM will call compareTo() method. It will compare inserting value with

exiting values one by one using compareTo() method.

public class Employee implements Comparable<Employee> {
 int id;
 String name;
 double salary;
 //Setters & Getters

 public Employee(int id, String name, double salary) {
 super();
 this.id = id;
 this.name = name;
 this.salary = salary;
 }
 @Override
 public String toString() {
 return "Employee [id=" + id + ", name=" + name + ", salary=" + salary + "]";

228 | P A G E Satya Kaveti

 }

 @Override
 public int compareTo(Employee o) {
//Here add(105) object will the CurrentID, Object.ID is existing element ID's. Which are not sorted.
 System.out.println("Current ID :" + this.id + " \t Obj.ID : " + o.id);

 if (this.id < o.id) {
 return -1;
 } else if (this.id > o.id) {
 return 1;
 } else {
 return 0;
 }
 }

 public static void main(String[] args) {

 Set<Employee> employees = new TreeSet<Employee>();
 employees.add(new Employee(105, "Satya", 3000));
 System.out.println("After 105 : ------> " + employees + "\n");

 employees.add(new Employee(102, "RAJ", 2000));
 System.out.println("After 102 : ------> " + employees + "\n");

 employees.add(new Employee(104, "Madhu", 5000));
 System.out.println("After 104 : ------> " + employees + "\n");

 employees.add(new Employee(101, "Srini", 1000));
 System.out.println("After 101 : ------> " + employees + "\n");

 employees.add(new Employee(103, "Vinod", 4000));
 System.out.println("After 103 : ------> " + employees + "\n");

 //See here we are adding 100, which is less than all exiting elements.
 //So, it will compare with almost all elements using compareTo() method
 employees.add(new Employee(100, "Vinod", 1000));
 System.out.println("After 100 : ------> " + employees + "\n");

 System.out.println("After : " + employees + "\n");
 }
}
Current ID :105 Obj.ID : 105
After 105 : ------> [105]

Current ID :102 Obj.ID : 105
After 102 : ------> [102, 105]

Current ID :104 Obj.ID : 105
Current ID :104 Obj.ID : 102
After 104 : ------> [102, 104, 105]

Current ID :101 Obj.ID : 104
Current ID :101 Obj.ID : 102
After 101 : ------> [101, 102, 104, 105]

Current ID :103 Obj.ID : 104
Current ID :103 Obj.ID : 102
After 103 : ------> [101, 102, 103, 104, 105]

Current ID :100 Obj.ID : 104
Current ID :100 Obj.ID : 102
Current ID :100 Obj.ID : 101
After 100 : ------> [100, 101, 102, 103, 104, 105]

After : [100, 101, 102, 103, 104, 105]

Remember, here we can’t pass comparable Object to TreeSet(), like comparable.

public class Employee implements Comparable<Employee> {
 private int id;

229 | P A G E Satya Kaveti

 private String name;
 private double salary;

//Setters/getters
 public Employee(int id, String name, double salary) {
 super();
 this.id = id;
 this.name = name;
 this.salary = salary;
 }
 @Override
 public int compareTo(Employee o) {
 if (this.id < o.id) {
 return -1;
 } else if (this.id > o.id) {
 return 1;
 } else {
 return 0;
 }
 }
 @Override
 public String toString() {
 return "Employee [id=" + id + ", name=" + name + ", salary=" + salary + "]";
 }
 public static void main(String[] args) {
 List<Employee> employees = new ArrayList<Employee>();
 employees.add(new Employee(105, "Satya", 3000));
 employees.add(new Employee(102, "RAJ", 2000));
 employees.add(new Employee(104, "Madhu", 5000));
 employees.add(new Employee(101, "Srini", 1000));
 employees.add(new Employee(103, "Vinod", 4000));

 System.out.println("Before : " + employees);
 //Until here no sorting will be performed

 Collections.sort(employees);
 //Collection.sort(Comparable) method will intern call CompareTo,

 & it will compare each element with other & Sort the elements

 System.out.println("After : " + employees);
 }
}
Before : [Employee [id=105, name=Satya, salary=3000.0], Employee [id=102, name=RAJ, salary=2000.0],
Employee [id=104, name=Madhu, salary=5000.0], Employee [id=101, name=Srini, salary=1000.0], Employee
[id=103, name=Vinod, salary=4000.0]]

After : [Employee [id=101, name=Srini, salary=1000.0], Employee [id=102, name=RAJ, salary=2000.0],
Employee [id=103, name=Vinod, salary=4000.0], Employee [id=104, name=Madhu, salary=5000.0], Employee
[id=105, name=Satya, salary=3000.0]]

In above we sorted Employees only on their ID type, but if we want to sort by Name & Salary at a time it

won’t possible. It accepts only one variable comparison at a time.

If we want to sort by Id, Name & Salary at a time, we can use Comparator interface.

Comparator present in java.util package & it defines two methods compare(ob1, ob2) & equals(ob1)

public int compare(Object ob1, Object ob2);

public boolean equals(Object ob)

Whenever we are implementing comparator interface we should provide implementation only for

compare() method & we are not required implementation for equals() method, because it is already

available to our class from Object class through inheritance.

230 | P A G E Satya Kaveti

public class MyComparator implements Comparator {
 @Override
 public int compare(Object oldObj, Object newObj) {
 System.out.println("newObj: " + newObj + ", oldObj: " + oldObj);

 Integer i1 = (Integer) oldObj;
 Integer i2 = (Integer) newObj;

 if (i1 < i2) {
 return +1;
 } else if (i1 > i2) {
 return -1;
 } else {
 return 0;
 }
 }

 public static void main(String[] args) {
 //TreeSet t = new TreeSet();// Line-1
 TreeSet t = new TreeSet(new MyComparator()); // Line-2

 t.add(50);
 System.out.println("After 50: ------> " + t + "\n");

 t.add(40);
 System.out.println("After 40: ------> " + t + "\n");

 t.add(10);
 System.out.println("After 10: ------> " + t + "\n");

 t.add(30);
 System.out.println("After 30: ------> " + t + "\n");

 t.add(20);
 System.out.println("After 20: ------> " + t + "\n");

 //See here we are adding 1, which is less than all exiting elements.
 //So, it will compare with almost all elements using compare() method
 t.add(1);
 System.out.println("After 1: ------> " + t + "\n");
 System.out.println(t);
 }
}
newObj: 50, oldObj: 50
After 50: ------> [50]

newObj: 50, oldObj: 40
After 40: ------> [50, 40]

newObj: 50, oldObj: 10
newObj: 40, oldObj: 10
After 10: ------> [50, 40, 10]
newObj: 40, oldObj: 30
newObj: 10, oldObj: 30

231 | P A G E Satya Kaveti

After 30: ------> [50, 40, 30, 10]

newObj: 40, oldObj: 20
newObj: 10, oldObj: 20
newObj: 30, oldObj: 20
After 20: ------> [50, 40, 30, 20, 10]

newObj: 40, oldObj: 1
newObj: 20, oldObj: 1
newObj: 10, oldObj: 1
After 1: ------> [50, 40, 30, 20, 10, 1]

[50, 40, 30, 20, 10, 1]

[50, 40, 30, 20, 10, 1] At Line1, if we passing object then internally JVM

will call compareTo() method which is for default Natural Sorting order.in this case output is

[0,5,10,15,20].

At Line2, if we passing object then JVM will call compare() method which is for

customize Sorting order.in this case output is [20,15,10,5,0].

As the same way if we want to change String order we do as follows

public class TreesetStringComp {
 public static void main(String[] args) {
 TreeSet t = new TreeSet(new MyComparators());
 t.add("HYDERABAD");
 t.add("VIJAYAWADA");
 t.add("BANGLORE");
 t.add("VIZAG");
 System.out.println(t);
 }
}

class MyComparators implements Comparator {
 public int compare(Object newObj, Object oldObj) {

232 | P A G E Satya Kaveti

 String s1 = (String) newObj;
 String s2 = (String) oldObj;
 int i1 = s1.length();
 int i2 = s2.length();
 if (i1 < i2) {
 return +1;
 } else if (i1 > i2) {
 return -1;
 } else {
 return 0;
 }
 }
}
[VIJAYAWADA, HYDERABAD, BANGLORE, VIZAG]

• EmpName implements Comparator for NAME Sorting

• EmpSalary implements Comparator for SALARY Sorting

• Comparable for ID Sorting for Employe Class

1.EmpName implements Comparator for NAME Sorting

class EmpName implements Comparator<Employee> {
 public int compare(Employee o1, Employee o2) {
 return o1.getName().compareTo(o2.getName());
 };
}

2.EmpSalary implements Comparator for SALARY Sorting

 class EmpSalary implements Comparator<Employee> {
 public int compare(Employee o1, Employee o2) {
 if (o1.getSalary() < o2.getSalary()) {
 return -1;
 } else if (o1.getSalary() > o2.getSalary()) {
 return 1;
 }
 return 0;
 }
}

3.Comparable for ID Sorting for Employee Class

public class Employee implements Comparable<Employee> {
 private int id;
 private String name;
 private double salary;

//Setters & Getters

 public Employee(int id, String name, double salary) {
 super();
 this.id = id;
 this.name = name;
 this.salary = salary;
 }
 public int compareTo(Employee o) {
 if (this.id < o.id) {
 return -1;
 } else if (this.id > o.id) {
 return 1;
 } else {
 return 0;
 }
 }
 public String toString() {
 return "Employee [id=" + id + ", name=" + name + ", salary=" + salary + "]";
 }

 public static void main(String[] args) {

233 | P A G E Satya Kaveti

 List<Employee> employees = new ArrayList<Employee>();
 employees.add(new Employee(105, "AAA", 3000));
 employees.add(new Employee(102, "ZZZ", 2000));
 employees.add(new Employee(104, "BBB", 5000));
 employees.add(new Employee(101, "DDD", 1000));
 employees.add(new Employee(103, "CCC", 4000));

 System.out.println("Before : " + employees);
 Collections.sort(employees);
 System.out.println("ByID :\n " + employees);

 //Now we can Sort our Employees based on Multiple Sorting(EmpName, EmpSaltry)
 //sort method accepts Comparator: Collections.sort(<list>, Comparator)
 Collections.sort(employees, new EmpName());
 System.out.println("EmpName : \n "+employees);

 Collections.sort(employees, new EmpSalary());
 System.out.println("EmpSalary : \n "+employees);
 }
}
Before : [Employee [id=105, name=AAA, salary=3000.0], Employee [id=102, name=ZZZ, salary=2000.0], Employee
[id=104, name=BBB, salary=5000.0], Employee [id=101, name=DDD, salary=1000.0], Employee [id=103, name=CCC,
salary=4000.0]]
ByID :
[Employee[id=101, name=DDD, salary=1000.0], Employee [id=102, name=ZZZ, salary=2000.0], Employee [id=103,
name=CCC, salary=4000.0], Employee [id=104, name=BBB, salary=5000.0], Employee [id=105, name=AAA,
salary=3000.0]]
EmpName :
[Employee[id=105, name=AAA, salary=3000.0], Employee [id=104, name=BBB, salary=5000.0], Employee [id=103,
name=CCC, salary=4000.0], Employee [id=101, name=DDD, salary=1000.0], Employee [id=102, name=ZZZ,
salary=2000.0]]
EmpSalary :
[Employee[id=101, name=DDD, salary=1000.0], Employee [id=102, name=ZZZ, salary=2000.0], Employee [id=105,
name=AAA, salary=3000.0], Employee [id=103, name=CCC, salary=4000.0], Employee [id=104, name=BBB,
salary=5000.0]]

• Comparable interface can be used to provide single way of sorting whereas Comparator interface

is used to provide different ways of sorting.

• For using Comparable, Class needs to implement it whereas for using Comparator we don’t need to

make any change in the class, we can implement it in outside.

• Comparable interface is in java.lang package , but Comparator interface is present in java.util.

• We don’t need to make any code changes at client side while using Comparable. For Comparator,

client needs to provide the Comparator class to use in compare() method.

• Arrays.sort() or Collection.sort() methods implemented using compareTo() method of the class.

234 | P A G E Satya Kaveti

Queue

• The Queue is used to insert elements at the end of the queue and removes from the beginning of the

queue. It follows FIFO concept.

• LinkedList, PriorityQueue are the most frequently used implementations.

PriorityQueue – Internal implementation

• Queue in Java is just an interface. We need a concrete implementation of the Queue interface.

LinkedList class implements the Queue interface and therefore it can be used as a Queue.

• The process of adding an element at the end of the Queue is called Enqueue, and the process of

removing an element from the front of the Queue is called Dequeue.

• A priority queue in Java is a special type of queue wherein all the elements are ordered

▪ as per their natural ordering using Comparable or

▪ based on a custom Comparator supplied at the time of creation.

• The front of the priority queue contains the least element(small) according to the specified

ordering, and the rear of the priority queue contains the greatest element(large).

So, when you remove an element from the priority queue, the least element according to the specified

ordering is removed first.
public class Demo {
 public static void main(String[] args) {
 Queue<Integer> q = new PriorityQueue<>();
 q.offer(400);
 q.add(200);
 q.add(700);
 q.add(100);
 q.add(500);
 while (!q.isEmpty()) {
 System.out.println(q.remove());
 }
 }
}

100
200
400
500
700

https://www.callicoder.com/java-queue/

235 | P A G E Satya Kaveti

Let’s say that we need to create a priority queue of String elements in which the String with the

smallest length is processed first. We can create such a priority queue by passing a

custom Comparator that compares two Strings by their length

Since PriorityQueue needs to compare its elements and order them accordingly, the user defined class

must implement the Comparable interface, or you must provide a Comparator while creating the priority

queue. Otherwise, PriorityQueue will throw a ClassCastException when you add new objects to it.

Constructors of PriorityQueue class

• PriorityQueue(): Creates with the default capacity (11) &natural ordering.

• PriorityQueue(int initialCapacity): specified initial capacity & natural ordering.

• PriorityQueue(int initialCapacity, Comparator comparator)

• PriorityQueue(PriorityQueue c): Creates a PriorityQueue containing the elements in the

specified priority queue.

• PriorityQueue(SortedSet c): Creates a PriorityQueue containing the elements in the specified

sorted set.

public class PriorityQDemo {
 public static void main(String[] args) {
 PriorityQueue q = new PriorityQueue();
 System.out.println(q.peek()); // null

 //System.out.println(q.element());//java.util.NoSuchElementException
 for (int i = 1; i <= 10; i++) {
 q.offer(i);
 }
 System.out.println(q); // [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
 System.out.println(q.poll());// 1
 System.out.println(q); // [2, 4, 3, 8, 5, 6, 7, 10, 9]
 }
}
null
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
1
[2, 4, 3, 8, 5, 6, 7, 10, 9] //see Order Changed

Priority queue represented as a balanced binary heap: the two children of queue[n] are queue[2*n+1] and

queue[2*(n+1)]. The priority queue is ordered by comparator, or by the elements' natural ordering.

if comparator is null: For each node n in the heap and each descendant d of n, n <= d. The element with

the lowest value is in queue[0], assuming the queue is nonempty.
 private static final int DEFAULT_INITIAL_CAPACITY = 11;
 transient Object[] queue;

If array Reaches maximum capacity

queue = Arrays.copyOf(queue, newCapacity);

Establishes the heap invariant (described above) in the entire tree, assuming nothing about the order of

the elements prior to the call.

 @SuppressWarnings("unchecked")
 private void heapify() {
 for (int i = (size >>> 1) - 1; i >= 0; i--)
 siftDown(i, (E) queue[i]);
 }

236 | P A G E Satya Kaveti

Deque (Double Ended Queue)

The Deque is related to the double-ended queue that supports addition or removal of elements from

either end of the data structure, it can be used as a queue (first-in-first-out/FIFO) or as a stack (last-in-

first-out/LIFO).

ArrayDeque – Internal implementation

The ArrayDeque class provides the facility of using deque and resizable-array. It inherits

AbstractCollection class and implements the Deque interface.

The important points about ArrayDeque class are:

• Unlike Queue, we can add or remove elements from both sides.

• Null elements are not allowed in the ArrayDeque.

• ArrayDeque is not thread safe, in the absence of external synchronization.

• ArrayDeque has no capacity restrictions.

• ArrayDeque is faster than LinkedList and Stack.

https://www.geeksforgeeks.org/queue/
https://www.geeksforgeeks.org/stack/
https://www.geeksforgeeks.org/stack/

237 | P A G E Satya Kaveti

Concurrent Collections

List – CopyOnWriteArrayList

• CopyOnWriteArrayList is a thread-safe variant of java.util.ArrayList. All mutative operations

(add, set, and so on) are implemented by making a fresh copy of the underlying array.

• As the name indicates, CopyOnWriteArrayList creates a Cloned copy of underlying ArrayList. For

every update operation at certain point both will synchronize automatically which is takes care by

JVM. So, there is no effect for threads which are performing read operation.

• It is costly to use because for every update operation a cloned copy will be created. Hence

CopyOnWriteArrayList is the best choice for frequent read operation, worst choice for frequent

write operation.

• The underlined data structure is growable array.

• It is thread-safe version of ArrayList.

Methods Summary:

public boolean addIfAbsent(Object obj)

public int addAllAbsent(Collection C)

238 | P A G E Satya Kaveti

1. Synchronization: ArrayList is not synchronized. CopyOnWriteArrayList is synchronized.

2.Iterator

• Iterator of CopyOnWriteArrayList is fail-safe & doesn't throw ConcurrentModificationException

even if underlying CopyOnWriteArrayList is modified once Iteration begins.

• Because Iterator is operating on a separate copy of ArrayList. Consequently, all the updates made

on CopyOnWriteArrayList is not available to Iterator

3.Remove Operation

Iterator of CopyOnWriteArrayList doesn’t support remove operation. But, Iterator of ArrayList

supports remove() operation.

4. Performance: ArrayList is faster as it is not synchronized. That means many threads can execute the

same piece of code simultaneously. In comparison, CopyOnWriteArrayList is slower.

5. Added in java version: ArrayList class was added in java version 1.2, while CopyOnWriteArrayList class

was added in java version 1.5 (or java 5).

6. Package: ArrayList class is present in java.util package , while CopyOnWriteArrayList class is present

in java.util.concurrent package

public class CopyOnWriteArrayListExample {
 public static void main(String args[]) {
 CopyOnWriteArrayList<String> list = new CopyOnWriteArrayList<String>();
 list.add("Java");
 list.add("J2EE");
 list.add("Collection");

 //add, remove operator is not supported by CopyOnWriteArrayList iterator
 Iterator<String> itr = list.iterator();
 while(itr.hasNext()){
 System.out.printf("Read from CopyOnWriteArrayList : %s %n", itr.next());
 // itr.remove(); //not supported in CopyOnWriteArrayList in Java
 list.add("New");
 }
 System.out.println(list);
 }
}

Set – CopyOnWriteArraySet, ConcurrentSkipListSet

CopyOnWriteArraySet
• CopyOnWriteArraySet is a Set that uses an internal CopyOnWriteArrayList for all its operations.

• CopyOnWriteArraySet is backed by CopyOnWriteArrayList, which means it also share all basic

properties of CopyOnWriteArrayList.

• Iterators of CopyOnWriteArraySet class doesn't support remove() operation, trying to remove an

element while iterating will result in UnSupportedOperationException.

• Only difference between CopyOnWriteArrayList & CopyOnWriteArraySet are one is List and other

is Set. But that brings all difference between Set and List in Java. For example, List is ordered,

allows duplicate while Set is unordered, but doesn't allow duplicate.

http://javarevisited.blogspot.sg/2012/02/fail-safe-vs-fail-fast-iterator-in-java.html
https://www.geeksforgeeks.org/copyonwritearraylist-in-java/
http://java67.blogspot.sg/2012/09/what-is-copyonwritearraylist-in-java-example-vs-arraylist.html

239 | P A G E Satya Kaveti

ConcurrentSkipListSet
• ConcurrentSkipListSet maintains the behavior same as TreeSet.

• Since ConcurrentSkipListSet implements NavigableSet in Java, it is a sorted set just

like TreeSet with added feature of being concurrent. Which essentially means it is a sorted data

structure which can be used by multiple threads where as TreeSet is not thread safe.

• The elements of the ConcurrentSkipListSet are kept sorted according to their natural ordering, or

by a Comparator provided at set creation time, depending on which constructor is used.

• ConcurrentSkipListSet provides a constructor that takes a comparator as a parameter.

• ConcurrentSkipListSet(Comparator<? super E> comparator) - Constructs a new, empty set that

orders its elements according to the specified comparator.

• ConcurrentSkipListSet implementation provides expected average log(n) time cost for

the contains, add, and remove operations and their variants. Insertion, removal, and access

operations safely execute concurrently by multiple threads.

Map – ConcurrentMap → ConcurrentHashMap, ConcurrentSkipListMap

ConcurrentMap:

ConcurrentMap is an interface, which is introduced in JDK 1.5 represents a Map which is capable of

handling concurrent access

It extends map interface in Java. Below are specific methods of ConcurrentMap interface:

• Object putIfAbsent(K key, V value):If the specified key is not already associated with a value,

associate it with the given value.

• boolean remove(Object key, Object value):Removes the entry for a key only if currently

mapped to a given value.

• boolean replace(K key, V oldValue, V newValue):Replaces the entry for a key only if currently

mapped to a given value

1. ConcurrentHashMap only locks a portion of the collection on update.

2. ConcurrentHashMap is better than Hashtable and synchronized Map.

3. ConcurrentHashMap is failsafe does not throws ConcurrentModificationException.

4. null is not allowed as a key or value in ConcurrentHashMap.

5. Level of concurrency can be chosen by the programmer on a ConcurrentHashMap while

initializing it.

ConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel)

By default, ConcurrentHashMap allows 16 number of concurrent threads. We can change this number

using the concurrencyLevl argument.

http://netjs.blogspot.com/2015/10/treeset-in-java.html
http://netjs.blogspot.com/2015/06/can-we-start-same-thread-twice-in-java.html
http://netjs.blogspot.com/2015/10/difference-between-comparable-and-comparator-java.html
http://netjs.blogspot.com/2015/04/constructor-in-java.html
https://www.geeksforgeeks.org/map-interface-java-examples/

240 | P A G E Satya Kaveti

• ConcurrentSkipListMap implements ConcurrentNavigableMap, it is a sorted map just

likeTreeMap (Which also implements NavigableMap interface).

• ConcurrentSkipListMap is sorted according to the natural ordering of its keys, or by a Comparator

provided at map creation time, depending on which constructor is used.

• ConcurrentSkipListMap in Java provides four constructors, out of those 2 relevant ones are -

o ConcurrentSkipListMap() - Constructs a new, empty map, sorted according to the

natural ordering of the keys.

o ConcurrentSkipListMap(Comparator<? super K> comparator) - Constructs a new,

empty map, sorted according to the specified comparator.

• ConcurrentSkipListMap class in Java implements a concurrent variant of SkipLists data structure

providing expected average log(n) time cost for the containsKey, get, put and remove

operations and their variants.

• Insertion, removal, update, and access operations safely execute concurrently by multiple threads.

Queue – BlockingQueue → PriorityBlockingQueue ,ArrayBlockingQueue,

BlockingQueue is used when one thread will produce objects, another thread consumes those Objects.

 Throws Exception Special Value Blocks Times Out

Insert add(o) offer(o) put(o) offer(o, timeout, timeunit)

Remove remove(o) poll() take() poll(timeout, timeunit)

Examine element() peek()

o BlockingQueue in Java doesn't allow null elements, various implementations like

ArrayBlockingQueue, LinkedBlockingQueue throws NullPointerException when you try to add null

on queue

o Two types of BlockingQueue:

a. Bounded queue – with maximal capacity defined

BlockingQueue<String> blockingQueue = new LinkedBlockingDeque<>(10);

b. Unbounded queue –no maximum capacity, can grow almost indefinitely

BlockingQueue<String> blockingQueue = new LinkedBlockingDeque<>();

http://netjs.blogspot.com/2015/11/treemap-in-java.html
http://netjs.blogspot.com/2015/10/difference-between-comparable-and-comparator-java.html
http://netjs.blogspot.com/2015/04/constructor-in-java.html

241 | P A G E Satya Kaveti

BlockingQueue provides a put() method to store the element and take() method to retrieve the

element. Both are blocking method, which means put() will block if the queue has reached its capacity

and there is no place to add a new element.

Similarly, take() method will block if blocking queue is empty. So, you can see that critical requirement of

the producer-consumer pattern is met right there, you don't need to put any thread synchronization code.

class Producer extends Thread {
 private BlockingQueue<Integer> sharedQueue;

 public Producer(BlockingQueue<Integer> aQueue) {
 super("PRODUCER");
 this.sharedQueue = aQueue;
 }
 public void run() { // no synchronization needed
 for (int i = 0; i < 10; i++) {
 try {
 System.out.println(getName() + " produced " + i);
 sharedQueue.put(i);
 Thread.sleep(200);
 // if we remove sleep, put will execute 10 times, then take will execute
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }
}

class Consumer extends Thread {
 private BlockingQueue<Integer> sharedQueue;

 public Consumer(BlockingQueue<Integer> aQueue) {
 super("CONSUMER");
 this.sharedQueue = aQueue;
 }
 public void run() {
 try {
 while (true) {
 Integer item = sharedQueue.take();
 System.out.println(getName() + " consumed " + item);
 }
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}
public class BlockingQueueDemo {
 public static void main(String[] args) {
 BlockingQueue<Integer> sharedQ = new LinkedBlockingQueue<Integer>();
 Producer p = new Producer(sharedQ);
 Consumer c = new Consumer(sharedQ);
 p.start();
 c.start();
 }
}

• ArrayBlockingQueue – a blocking queue class based on bounded Java Array. Once instantiated,

cannot be resized.

• PriorityBlockingQueue – a priority queue-based blocking queue. It is an unbounded concurrent

collection.

• LinkedBlockingQueue – an optionally bounded Java concurrent collection. It orders elements based

on FIFO order.

https://javapapers.com/java/java-arrayblockingqueue/

242 | P A G E Satya Kaveti

Deque - ConcurrentLinkedDeque

ConcurrentLinkedDeque in Java is an unbounded thread-safe Deque which stores its elements as linked

nodes. Since it implements deque interface ConcurrentLinkedDeque supports element insertion and

removal at both ends.

We have methods addFirst(), addLast(), getFirst(), getLast(), removeFirst(), removeLast() to

facilitate operations at both ends.

Usage of ConcurrentLinkedDeque

A ConcurrentLinkedDeque is an appropriate choice when many threads will share access to a common

collection as concurrent insertion, removal, and access operations execute safely across multiple threads.

Note that it doesn't block operations as done in the implementation of BlockingDequeue interface

like LinkedBlockingDeque. So there are no putFirst(), takeFirst() or putLast(), takeLast() methods which will

wait if required.

Java.util.Arrays

This class contains various methods for manipulating arrays (such as sorting and searching). This class also

contains a static factory that allows arrays to be viewed as lists.

• Arrays to list

• Sorting & Searching

• Copying & filling

• public static String toString(int[] a) The string representation consists of a list of the array’s

elements, enclosed in square brackets (“[]”).

 public static void main(String[] args) throws Exception {
 String a[] = {"a", "b", "c"};
 System.out.println("OLD \t :"+a.toString());
 System.out.println("New \t :"+Arrays.toString(a));
 }
OLD : [Ljava.lang.String;@6d06d69c
New : [a, b, c]

• public static List asList(T… a) - This method returns a fixed-size list backed by the specified

array. adding or removing elements from the list aren’t allowed on this created list, you can

only read or overwrite the elements

• public static void sort(int[] a) – Sorts the specified array into ascending numerical order.

• public static void sort(int[] a, int fromIndex, int toIndex) If we wish to sort a specified range

of the array into ascending order.

• public static int binarySearch(int[] a, int key) Returns an int value for the index of the specified

key in the specified array. Returns a negative number if the specified key is not found in the array.

• public static int[] copyOf(int[] original, int newLength) Copies the specified array and length.

It truncates the array if provided length is smaller and pads if provided.

http://netjs.blogspot.com/2016/03/blockingdeque-in-java.html
http://netjs.blogspot.com/2016/04/linkedblockingdeque-in-java.html

243 | P A G E Satya Kaveti

• public static int[] copyOfRange(int[] original, int from, int to) Copies the specified range of

the specified array into a new array

• public static void fill(int[] a, int val) Fills all elements of the specified array with the specified

value.

• public static void fill(int[] a, int fromIndex, int toIndex, int val) – Fills elements of the

specified array with the specified value from the fromIndex element, but not including the toIndex

element.

• static boolean equals(Object[] a, Object[] a2) - It will compare the Content of two arrays &

must be in same Order

 public static void main(String[] args) throws Exception {
 String a[] = {"a", "b", "c"};
 String b[] = {"a", "b", "c"};
 String c[] = {"c", "b", "a"};
 System.out.println("OLD : "+a.equals(b));
 System.out.println("New : "+Arrays.equals(a, b));
 System.out.println("Wrong Order : "+Arrays.equals(a, c));
 //It will compare the Content & must be in same Order
 }
 OLD : false
 New : true
 Wrong Order : false

• static int hashCode(Object[] a)- This method returns a hash code based on the contents of the

specified array.

java.util.Collections class

This class consists exclusively of static methods that operate on or return collections. It contains

polymorphic algorithms that operate on collections, "wrappers", which return a new collection backed by

a specified collection, and a few other odds and ends.

The methods of this class all throw a NullPointerException if the collections or class objects provided to

them are null.

• Create List/Set/Map from Arrays

• Converting List/Set/Map to Synchronized & unmodifiable

• Sorting & Searching

• Reverse, shuffle, min, max, copy

• List<String> list = List.of("foo", "bar", "baz");

• Set<String> set = Set.of("foo", "bar", "baz");

• Map<String, String> map = Map.of("foo", "a", "bar", "b", "baz", "c");

Map<String, String> map = Map.ofEntries(
 new AbstractMap.SimpleEntry<>("foo", "a"),
 new AbstractMap.SimpleEntry<>("bar", "b"),
 new AbstractMap.SimpleEntry<>("baz", "c"));

1. static void sort(List list1): Sorts the list list1 into ascending order according to the natural sequence

(a before b or 1 before 2) of the elements.

https://www.tutorialspoint.com/java/util/arrays_equals_object.htm

244 | P A G E Satya Kaveti

2. static int binarySearch(List list, Object ob): Searches the ob in the list list. Returns the index of the

element obj. Before applying this method, the elements must be sorted earlier with sort() method

3. static Collection synchronizedCollection(Collection col1): Returns a synchronized version of

collection col1. It is used for thread-safe operations. We have following specific Methods like

• synchronizedList()

• synchronizedSet()

• synchronizedMap()., etc

4. static Collection unmodifiableCollection(Collection col1): make any Collection to unmodifiable

(read-only) version of collection. Any methods like add() or remove(), if applied

throws UnsupportedOperationException We have following specific Methods like

• unmodifiableList()

• unmodifiableSet()

• unmodifiableMap()., etc

4. static void reverse(List list1): Existing order of the elements in the list list1 are reversed.

5. static void shuffle(List list1): Shuffles the existing elements of list1 randomly. For repeated

execution of the method, elements with different order are obtained.

6. static void swap(List list1, int index1, int index2): List list1 elements at index

numbers index1 and index2 are swapped.

7. static void fill(List list1, Object obj1): Replaces all the elements of list1 with obj1. Earlier elements

are lost. This method is used to fill all the elements with the same values.

8. static void copy(List destination1, List source1): Copies all the elements of List source1into

the destination1 list. It is like arraycopy() method.

9. static Object min(Collection col1): Returns the element with the minimum value

10. static Object max(Collection col1): Returns the element with the maximum value

11. static void rotate(List list1, int dist1): Rotates the elements in the list list1 by the specified

distance dist1.

12. static boolean replaceAll(List list1, Object oldObj, Object newObj): Replaces the old

element oldObj with the new element newObj in the list list1 (all the occurrences). Returns true when

the operation is successful (when the oldObj exists).

13. static int frequency(Collection col1, Object obj1): Checks how many times obj1 exists in

collection col1, returns as an integer value.

14. static boolean disjoint(Collection col1, Collection col2): Returns true if the collection

classes col1 and col2 do not have any common elements. Introduced with JDK 1.5.

15. static boolean addAll(Collection col1, Object obj1): Here, obj1 can be a single element or an array.

Adds obj1 to the collection col1.

http://way2java.com/collections/unsupportedoperationexception/
http://way2java.com/arrays/java-array-copying/
http://way2java.com/java-versions-2/jdk-1-5-java-se-5-version/

245 | P A G E Satya Kaveti

12. Stream API
Lambda expressions are new in Java 8. Java lambda expressions are Java's first step into functional

programming.

Java lambda expressions are commonly used to implement simple event listeners / callbacks, or in

functional programming with the Java Streams API

Functional Interfaces

Runnable r = new Runnable(){
 @Override
 public void run() {
 System.out.println("My Runnable");
 }};

If you look at the above code, the actual part of the code is inside run() method. Rest of the code is the

way java programs are structured. This is a type of boiler-plate code.

Java 8 Functional Interfaces and Lambda Expressions help us in writing smaller and cleaner code by

removing a lot of boiler-plate code. Functional Interfaces has following Characteristics.

• An interface with exactly one abstract method is called Functional Interface.

• Using @FunctionalInterface annotation, we can mark an interface as functional interface.

• If an interface is annotated with @FunctionalInterface annotation and we try to have more

than one abstract method, it throws compiler error.

• The major benefit of java 8 functional interfaces is that we can use lambda expressions to

instantiate them and avoid using bulky anonymous class implementation.

Java 8 has defined a lot of functional interfaces in java.util.function package. Some of the useful

functional interfaces are Predicate, Function, Consumer, Supplier.

java.util.function package in Java 8 contains many built-in functional interfaces like-

1.Predicate(test): The Predicate interface has an abstract method test() which gives a boolean value as

a result, by taking input argument type T. Its prototype is

public Predicate
{
 public boolean test(T t);
}

2.Function: The Function interface has an abstract method apply() which takes argument of one type T

and returns a result of another type R. Its prototype is

public interface Function
{

 public R apply(T t);
}

http://tutorials.jenkov.com/java-collections/streams.html

246 | P A G E Satya Kaveti

3.Consumer Interface: It accepts an input and returns no result.

@FunctionalInterface
public interface Consumer {
 void accept(T t);
}

And it contains default method andThen(Consumer<? super T> after)

4.Supplier Interface: In some scenarios we have no input but expected to return an output. Those

situations Supplier<T> can be used without the need to define a new functional interface every time.

@FunctionalInterface
public interface Supplier<T> {
 T get();
}

5.BinaryOperator: The BinaryOperator interface has an abstract method apply which takes two

arguments and returns a result of same type. Its prototype is

public interface BinaryOperator
{
 public T apply(T x, T y);
}

Lambdas

Lambda’s are used to provide the implementation of Functional interface, Less coding.

Lambda Expressions syntax is (argument)->(body). Now let’s see how we can write above anonymous

Runnable using lambda expression.

Runnable r1 = () -> System.out.println("My Runnable");

• The body of a lambda expression can contain zero, one or more statements.

• When there is a single statement curly brackets are Optional, and the return type of the anonymous

function is the same as that of the body expression.

• When there are more than one statements, then these must be enclosed in {curly brackets} and the

return type of the anonymous function is the same as the type of the value returned within the code

block, or void if nothing is returned.

1.Zero parameter

() -> System.out.println("Zero parameter lambda");

2.One parameter

(p) -> System.out.println("One parameter: " + p);

3.Multiple parameters

(p1, p2) -> System.out.println("Multiple parameters: " + p1 + ", " + p2);

247 | P A G E Satya Kaveti

Java provides a new method forEach() to iterate the elements. It is defined in Iterable and Stream

interface. It is a default method defined in the Iterable interface.

public interface Iterable<T>
{
 Iterator<T> iterator();
 Spliterator<T> spliterator();
 void forEach(Consumer<? super T> action);
}

Collection classes which extends Iterable interface can use forEach loop to iterate elements.

default void forEach(Consumer<super T>action)

“performs the given action for each element of the Iterable until all elements have been processed or the

action throws an exception.”

public class LambdaExpressionExample7{
 public static void main(String[] args) {
 List<String> list=new ArrayList<String>();
 list.add("ankit");
 list.add("mayank");
 list.add("irfan");
 list.add("jai");
 list.forEach(
 (n)->System.out.println(n)
);
 }
}

This code will print every element of the list. You can even replace lambda expression with method

reference, because we are passing the lambda parameter as it is - to System.out.println() method as

list.forEach(System.out::println);
If both Passing Parameter & Printing parameter is same we can use System.out::println

• forEach() is a terminal operation, which means once calling forEach() method on stream, you

cannot call another method. It will result in a runtime exception.

• When you call forEach() on parallel stream, the order of iteration is not guaranteed, but you can

ensure that ordering by calling forEachOrdered() method.

• There are two forEach() method in Java 8, one defined inside Iterable and other

inside java.util.stream.Stream class.

o If purpose of forEach() is just iteration then you can directly call it

e.g. list.forEach() or set.forEach()

o if you want to perform some operations e.g. filter or map, then better first get the stream

and then perform that operation and finally call forEach() method.

Collections.sort(list, (p1,p2)->{
 return p1.name.compareTo(p2.name);
 });

 for(Product p:list){
 System.out.println(p.id+" "+p.name+" "+p.price);
 }

http://javarevisited.blogspot.com/2013/11/java-8-tutorials-resources-and-examples-lambda-expression-stream-api-functional-interfaces.html
http://javarevisited.blogspot.com/2013/11/java-8-tutorials-resources-and-examples-lambda-expression-stream-api-functional-interfaces.html
http://java67.blogspot.com/2014/05/3-examples-to-loop-map-in-java-foreach.html

248 | P A G E Satya Kaveti

Streams

All of us have watched online videos on Youtube. When we start watching a video, a small portion of the

video file is first loaded into our computer and starts playing. we don’t need to download the complete

video before we start watching it. This is called video streaming.

At a very high level, we can think of that small portion of the video file as a Stream and the whole video

as a Collection

In Java, java.util.Stream interface represents a stream on which one or more operations can be

performed. Stream operations are either intermediate or terminal.

• Intermediate operations return a stream. so we can chain multiple intermediate operations

without using semicolons.

• Terminal operations are either void or return a non-stream result

Streams are created on a source, e.g. a java.util.Collection like List or Set. The Map is not supported

directly, we can create stream of map keys, values or entries. Stream operations can either be executed

sequentially or parallel. when performed parallelly, it is called a parallel stream.

List<String> myList = Arrays.asList("a1", "a2", "b1", "c2", "c1");

myList.stream()
 .filter(s -> s.startsWith("c"))
 .map(String::toUpperCase)
 .sorted()
 .forEach(System.out::println);
In above filter, map and sorted are intermediate operations whereas forEach is a terminal operation.

Streams can be created from various data sources, especially collections. Lists and Sets support new

methods stream() and parallelStream() to either create a sequential or a parallel stream.Parallel

streams can operate on multiple threads.

249 | P A G E Satya Kaveti

The features of Java stream are

• A stream is not a data structure.

• it takes input from the Collections, Arrays or I/O channels.

• Streams don’t change original data structure; they only provide the result as per the pipelined

methods.

• Do not support indexed access

• Lazy access supported

• Parallelizable

• Each intermediate operation is lazily executed and returns a stream as a result. hence various

intermediate operations can be pipelined. Terminal operations mark the end of the stream and return

the result.

1. Creating Streams

XxxStream.of() : Create Steam using Primitive types (int, char, byte, double)

IntStream is = IntStream.of(3, 4, 5, 6);
DoubleStream is = DoubleStream.of(3.1, 4.0, 5.7, 6.0);

Stream.of() : Create Steam using Primitive Object types (Int, String, Wrapper types)

//Primitive Types
Stream<Integer> intStream= Stream.of(1,2,3,4,5,6,7,8);

Stream<Character> charStream = Stream.of('A','B','C','D','E');

Stream<String> strStream = Stream.of("Aaa", "Bbbb", "Cccc", "Dddd");

IntStream is a stream of primitive int values.

Stream<Integer> is a stream of Integer objects

Stream.of(array) : Create Steam using Array types (Int, String)

Stream<Integer> intArraystream = Stream.of(new Integer[]{1,2,3,4,5,6,7,8,9});

Stream<Character> charArraystream = Stream.of(new Character[]{'A','B','C','D','E'});

Stream<String> strArraystream = Stream.of(new String[]{"Aaa", "Bbbb", "Cccc", "Dddd"});

List.stream() : Create Steam from Collection types (List, Set, Not MAP)

 //Collection types
 List<String> list = new ArrayList<String>();
 list.add("a");
 list.add("b");
 list.add("c");
 Stream<String> strListStream = list.stream();

 List<Integer> list2 = new ArrayList<Integer>();
 list2.add(1);
 list2.add(2);
 list2.add(3);
 Stream<Integer> intListStream = list2.stream();

https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/util/stream/IntStream.html
https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/util/stream/Stream.html

250 | P A G E Satya Kaveti

Ex: Create Steam by Splitting String
Stream<String> splitStream = Stream.of("ABC$D".split("\\$"));

2. Stream Operations

filter(Predicate<T>) The elements of the stream matching the predicate (Condition)

map(Function<T, U>) Performs some operation on each element & return something (add, multiply, convert)

flatMap(Function<T,

Stream<U>>
The elements of the streams resulting from applying the provided stream-bearing

function to the elements of the stream

distinct() The elements of the stream, with duplicates removed

sorted() The elements of the stream, sorted in natural order

Sorted(Comparator<T>) The elements of the stream, sorted by the provided comparator

limit(long) The elements of the stream, truncated to the provided length

skip(long) The elements of the stream, discarding the first N elements

takeWhile(Predicate<T>)
(The elements of the stream, truncated at the first element for which the provided

predicate is not true

dropWhile(Predicate<T>)
(Java 9 only) The elements of the stream, discarding the initial segment of elements for

which the provided predicate is true

forEach(Consumer<T> action) Apply the provided action to each element of the stream.

toArray() Create an array from the elements of the stream.

reduce(...) Aggregate the elements of the stream into a summary value.

collect(...) Aggregate the elements of the stream into a summary result container.

min(Comparator<T>) Return the minimal element of the stream according to the comparator.

max(Comparator<T>) Return the maximal element of the stream according to the comparator.

count() Return the size of the stream.

{any,all,none}Match(Predicate<T>) Return any/all/none of the elements of the stream match the predicate.

findFirst() Return the first element of the stream, if present.

findAny() Return any element of the stream, if present.

Collectors & collect method
java.util.stream
|
Interface Collector
|
class Collectors

Collectors class : Implementations of Collector that implement various useful reduction operations, such

as gathering elements into collections, summarizing elements according to various criteria, etc.

Some of Useful methods:

To Collections Math Operations Map Grouping

toCollection(Supplier)

toList()

toSet()

toMap(Function, Function)

counting()

minBy(Comparator)

maxBy(Comparator)

summingInt(ToIntFunction),

groupingBy(Function)

groupingByConcurrent(Function)

partitioningBy(Predicate)

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html

251 | P A G E Satya Kaveti

joining()

mapping(Function, Collector)

filtering(Predct, Collector)

summingLong(ToLongFunction),

averagingInt(ToIntFunction),

averagingLong(ToLongFunction)

reducing(BinaryOperator)

Following are Country names as List – common for all below Operations

 List<String> list = new ArrayList<String>();
 list.add("America");
 list.add("China");
 list.add("Japan");
 list.add("Germany");
 list.add("India");
 list.add("Italy");
 list.add("Russia");
 list.add("Sweden");
 list.add("Ukraine");
 list.add("India");
 list.add("Italy");

Intermediate Operations:

1. Stream.forEach(consumer):

Printing list using foreach

list.stream().forEach(System.out::println);

2. Stream.filter()

The filter() method accepts a Predicate to filter all elements of the stream. This operation is

intermediate which enables us to call another stream operation (e.g. forEach()) on the result.

 System.out.println("\n \nPrint Countries name Start with I");
 list.stream()
 .filter((n)->n.startsWith("I"))
 .forEach(System.out::println);
Print Countries name Start with I
India
Italy
India
Italy

3. Stream.map()

The map() intermediate operation converts each element in the stream into another object via the given

function. The following example converts each string into an UPPERCASE string. But we can use map() to

transform an object into another type as well.

System.out.println("\n \n Convert to Upper case");
 list.stream()

 .filter((n) -> n.startsWith("I"))
 .map((n) -> n.toUpperCase())
 .map((String::toUpperCase)) //Using reference <RETURN TYPE> :: Opration
 .forEach(System.out::println);

https://howtodoinjava.com/java8/how-to-use-predicate-in-java-8/
https://howtodoinjava.com/java8/java-stream-foreach/

252 | P A G E Satya Kaveti

4. Stream.sorted()

The sorted() method is an intermediate operation that returns a sorted view of the stream. The elements

in the stream are sorted in natural order unless we pass a custom Comparator.

 System.out.println("\n \n Convert to Upper case & Sort");
 list.stream()
 .map(String::toUpperCase)
 .sorted()
 .forEach(System.out::println);

 list.stream()
 .map(String::toUpperCase)
 .sorted(Comparator.reverseOrder())
 .forEach(System.out::println);

To Sort User Object based on Age

List<User> sortedList = users.stream()
 .sorted(Comparator.comparingInt(User::getAge)
 .reversed())
 .collect(Collectors.toList());
 sortedList.forEach(System.out::println);

To Sort User Object based on Name

List<User> sortedList = users.stream()
 .sorted(Comparator.comparing(User::getName))
 .collect(Collectors.toList());

5. Stream.distinct()

To Remove duplicate items from Stream. Javadocs say that distinct() - Returns a stream consisting of the

distinct elements (according to Object.equals(Object)) of this stream. In case of object types we need to

generate hashcode to made objects equal.

System.out.println("\n \n List of Strings Start with I");
List tempList = list.stream()
 .filter((n)-> n.startsWith("I"))
 .distinct()
 .collect(Collectors.toList());
System.out.println(tempList);

Terminal Operations:

forEach: The forEach method is used to iterate through every element of the stream.

List number = Arrays.asList(2,3,4,5);

number.stream().map(x->x*x).forEach(y->System.out.println(y));

5. Stream.collect() :: Collection

The collect() method is used to receive elements from a steam and store them in a collection.

To Collections Math Operations Map Grouping

toCollection(Supplier)

toList()

toSet()

counting()

minBy(Comparator)

maxBy(Comparator)

groupingBy(Function)

groupingByConcurrent(Function)

https://howtodoinjava.com/java/collections/java-comparator/
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#distinct--

253 | P A G E Satya Kaveti

toMap(Function, Function)

joining()

mapping(Function, Collector)

filtering(Predct, Collector)

summingInt(ToIntFunction),

summingLong(ToLongFunction),

averagingInt(ToIntFunction),

averagingLong(ToLongFunction)

partitioningBy(Predicate)

reducing(BinaryOperator)

System.out.println("\n \n List of Strings Start with I");
List tempList = list.stream()
 .filter((n)-> n.startsWith("I"))
 .collect(Collectors.toList());
System.out.println(tempList);

6. Stream.match() :: boolean

Various matching operations can be used to check whether a given predicate matches the stream

elements. All of these matching operations are terminal and return a boolean result.

boolean matchedResult = memberNames.stream()
 .anyMatch((s) -> s.startsWith("A"));
System.out.println(matchedResult); //true

matchedResult = memberNames.stream()
 .allMatch((s) -> s.startsWith("A"));
System.out.println(matchedResult); //false

matchedResult = memberNames.stream()
 .noneMatch((s) -> s.startsWith("A"));
System.out.println(matchedResult); //false

7. Stream.count() :: Integer/Any Number

The count() is a terminal operation returning the number of elements in the stream as a long value.

long totalMatched = memberNames.stream()
 .filter((s) -> s.startsWith("A"))
 .count();
System.out.println(totalMatched); //2

8. Stream.reduce()

The reduce() method performs a reduction on the elements of the stream with the given function. The

result is an Optional holding the reduced value.

In the given example, we are reducing all the strings by concatenating them using a separator #.

Optional<String> reduced = memberNames.stream()
 .reduce((s1,s2) -> s1 + "#" + s2);

reduced.ifPresent(System.out::println);

9. Stream.anyMatch() :: Boolean

The anyMatch() will return true once a condition passed as predicate satisfies. Once a matching value is

found, no more elements will be processed in the stream.

https://howtodoinjava.com/java8/java-8-optionals-complete-reference/

254 | P A G E Satya Kaveti

In the given example, as soon as a String is found starting with the letter 'A', the stream will end and the

result will be returned.

boolean matched = memberNames.stream()
 .anyMatch((s) -> s.startsWith("A"));
System.out.println(matched); //true

10. Stream.findFirst()

The findFirst() method will return the first element from the stream and then it will not process any

more elements.

String firstMatchedName = memberNames.stream()
 .filter((s) -> s.startsWith("L"))
 .findFirst().get();
System.out.println(firstMatchedName); //Lokesh

11. flatMap()

flattening is referred to as merging multiple collections/arrays into one

flatMap() = Flattening + map()

Stream.flatMap() helps in converting Stream<Collection<T>> to Stream<T>.

Flattening example 1

Before flattening : [[1, 2, 3], [4, 5], [6, 7, 8]]
After flattening : [1, 2, 3, 4, 5, 6, 7, 8]

 List <Integer> list1 = Arrays.asList(1, 2, 3);
 List <Integer> list2 = Arrays.asList(4, 5, 6);
 List <Integer> list3 = Arrays.asList(7, 8, 9);

 List <List <Integer >> listOfLists = Arrays.asList(list1, list2, list3);

 List < Integer > listOfAllIntegers = listOfLists.stream()
 .flatMap(x -> x.stream())
 .collect(Collectors.toList());

 System.out.println(listOfAllIntegers);

12. toArray
 Employee[] employeesArray = employeeList.stream()
 .filter(e -> e.getSalary() < 400)
 .toArray(Employee[]::new);

class Product{
 int id;
 String name;
 float price;
 public Product(int id, String name, float price) {
 this.id = id;
 this.name = name;
 this.price = price;
 }
}

public class Streams {

255 | P A G E Satya Kaveti

 public static void main(String[] args) {

 List<Product> productsList = new ArrayList<Product>();
 //Adding Products
 productsList.add(new Product(1,"HP Laptop",25000f));
 productsList.add(new Product(2,"Dell Laptop",30000f));
 productsList.add(new Product(3,"Lenevo Laptop",28000f));
 productsList.add(new Product(4,"Sony Laptop",28000f));
 productsList.add(new Product(5,"Apple Laptop",90000f));

 List<Float> productPriceList2 =productsList.stream()
 .filter(p -> p.price > 30000)// filtering data
 .map(p->p.price) // fetching price
 .collect(Collectors.toList()); // collecting as list
 System.out.println(productPriceList2); //[90000.0]

 // This is more compact approach for filtering data
 productsList.stream()
 .filter(product -> product.price == 30000)
 .forEach(product -> System.out.println(product.name)); // Dell Laptop

 // count number of products based on the filter
 long count = productsList.stream()
 .filter(product->product.price<30000)
 .count();
 System.out.println(count); //3

 // Converting product List into Set
 Set<Float> productPriceList = productsList.stream()
 .filter(product->product.price < 30000) // filter product on the base of price
 .map(product->product.price) //get the price
 .collect(Collectors.toSet()); // collect it as Set(remove duplicate elements)
 System.out.println(productPriceList); //[25000.0, 28000.0]

 }
}

3. Parallel Streams

• Sequential or Normal streams just work like for-loop using a single core. Parallel streams divide

the provided task(like fork& join) into many and run them in different threads, utilizing multiple

cores of the computer.

• In parallel execution, if number of tasks are more than available cores at a given time, the

remaining tasks are queued waiting for currently running task to finish.

• In above-listed stream examples, anytime we want to do a particular job using multiple threads in

parallel cores, all we have to call parallelStream() method instead of stream() method.

//For ArrayTypes
Stream<Integer> parllelStream =Stream.of(nums).parallel();

//For List Types
Stream<String> stream = list.parallelStream();

256 | P A G E Satya Kaveti

 Integer[] nums = {1,1, 2, 3,3, 4, 5, 6, 7, 8, 9, 10};
 System.out.println("\n \n Print Strings using normal Stream");
 Stream<Integer> seqStream =Stream.of(nums);
 seqStream.distinct()
 .sorted(Comparator.reverseOrder())
 .forEach((n)-> {
 System.out.println(Thread.currentThread().getName()+" : "+n);

 });
Print Strings using normal Stream
main : 10
main : 9
main : 8
main : 7
main : 6
main : 5
main : 4
main : 3
main : 2
main : 1

 System.out.println("\n \n Print Strings using Parllel Stream");
 Stream<Integer> parllelStream =Stream.of(nums).parallel();
 parllelStream.distinct()
 .sorted(Comparator.reverseOrder())
 .forEach((n)-> {
 System.out.println(Thread.currentThread().getName()+" : "+n);
 });
Print Strings using Parllel Stream
main : 4
ForkJoinPool.commonPool-worker-7 : 6
ForkJoinPool.commonPool-worker-5 : 9
ForkJoinPool.commonPool-worker-9 : 2
ForkJoinPool.commonPool-worker-3 : 3
ForkJoinPool.commonPool-worker-15 : 1
ForkJoinPool.commonPool-worker-11 : 8
ForkJoinPool.commonPool-worker-13 : 5
ForkJoinPool.commonPool-worker-5 : 10
ForkJoinPool.commonPool-worker-7 : 7

In Above we are using parllelStream, So order is not correct, because the steam is processed by many

threads.

257 | P A G E Satya Kaveti

Examples

Creating Streams Interamediate Terminal Operations

concat() filter() forEach()

empty() map() forEachOrdered()

generate() flatMap() toArray()

iterate() distinct() reduce()

of() sorted() collect()

peek() min()
limit() max()
skip() count()

anyMatch()

allMatch()
noneMatch()
findFirst()
findAny()

1.Count Occurrences of a Char in a String

String someString = "elephant";
long count = someString

 .chars()
 .filter(ch -> ch == 'e')
 .count();

Using map:

• Invoke the chars() method on the input string and which returns the IntStream instance. This int

stream holds the integer representation of each character in the string.

• Need to convert IntStream to CharStream using the mapToObj() method.

• Last, need to group by characters by calling Collectors.groupingBy() and to count

call Collectors.counting() method.

String input = "success";

IntStream intStream = input.chars();

 Stream<Character> stream = intStream.mapToObj(ch -> (char) ch);
 Map<Character, Long> output = stream.collect(Collectors.groupingBy(ch -> ch, Collectors.counting()));
 System.out.println(output);

 //Single Line
 Map<Character, Long> output2 = input.chars()
 .mapToObj(ch -> (char) ch)
 .collect(Collectors.groupingBy(ch -> ch, Collectors.counting()));
 System.out.println(output2);

Counting Empty String

 List<String> strList = Arrays.asList("abc", "", "bcd", "", "defg", "jk");
 long c1 = strList.stream()

 .filter(s -> s.isEmpty())
 .count();

 System.out.println(c1);//2

https://howtodoinjava.com/java8/java-stream-filter-example/
https://howtodoinjava.com/java8/java-stream-foreach/
https://howtodoinjava.com/java8/stream-map-example/
https://howtodoinjava.com/java8/java-stream-foreachordered/
https://howtodoinjava.com/java8/stream-flatmap-example/
https://howtodoinjava.com/java8/convert-stream-to-array/
https://howtodoinjava.com/java8/java-stream-distinct-examples/
https://howtodoinjava.com/java8/stream-sorted-method/
https://howtodoinjava.com/java8/java-stream-peek-example/
https://howtodoinjava.com/java8/java-stream-min/
https://howtodoinjava.com/java8/java-stream-limit-method-example/
https://howtodoinjava.com/java8/java-stream-max/
https://howtodoinjava.com/java8/stream-skip-example/
https://howtodoinjava.com/java8/stream-count-elements-example/
https://howtodoinjava.com/java8/stream-anymatch-example/
https://howtodoinjava.com/java8/stream-allmatch-example/
https://howtodoinjava.com/java8/stream-nonematch-example/
https://howtodoinjava.com/java8/stream-findfirst-findany/
https://howtodoinjava.com/java8/stream-findfirst-findany/
https://www.javaprogramto.com/2019/12/java-8-stream-maptoint.html
https://www.javaprogramto.com/2020/01/java-stream-filter-count.html

258 | P A G E Satya Kaveti

Map & joining
 System.out.println("Count String whose length is more than three");
 c1 = strList.stream().filter(s -> s.length()>3).count();
 System.out.println(c1);//1

 System.out.println("Remove all empty Strings from List");
 List l1 = strList.stream()
 .filter(s -> !s.isEmpty())
 .collect(Collectors.toList());

 System.out.println("Convert Strings in a list to uppercase and Join them with coma");
 String join = strList.stream()

 .map(s -> s.toUpperCase())
 .collect(Collectors.joining(","));

Statistics: Get count, min, max, sum, and the average for numbers

we will learn how to get some statistical data from Collection, e.g. finding the minimum or maximum

number from List, calculating the sum of all numbers from a numeric list, or calculating the average of all

numbers from List.

Since these statistics operations are numeric in nature, it's essential to call the mapToInt() method. After

this, we call the summaryStatistics(), which returns an instance of an IntSummaryStatistics.

It is this object which provides us utility method like getMin(), getMax(), getSum() or getAverage().

 List<Integer> primes = Arrays.asList(2, 3, 5, 7, 11, 13, 17, 19, 23, 29);
 c1 = primes.stream()

 .mapToInt(s -> s)
 .summaryStatistics()
 .getSum();

 System.out.println(c1);

 List<Integer> primes1 = Arrays.asList(2, 3, 5, 7, 11, 13, 17, 19, 23, 29);
 IntSummaryStatistics stats = primes1.stream().mapToInt((x) -> x).summaryStatistics();
 System.out.println("Highest prime number in List : " + stats.getMax());
 System.out.println("Lowest prime number in List : " + stats.getMin());
 System.out.println("Sum of all prime numbers : " + stats.getSum());
 System.out.println("Average of all prime numbers : " + stats.getAverage());

Ref.

https://howtodoinjava.com/java/stream/java-streams-by-examples/

https://www.java67.com/2014/04/java-8-stream-examples-and-tutorial.html

https://javabypatel.blogspot.com/2018/06/java-8-stream-practice-problems.html

http://java67.blogspot.sg/2014/02/how-to-find-largest-and-smallest-number-array-in-java.html
http://java67.blogspot.sg/2014/02/how-to-find-largest-and-smallest-number-array-in-java.html
https://howtodoinjava.com/java/stream/java-streams-by-examples/
https://www.java67.com/2014/04/java-8-stream-examples-and-tutorial.html
https://javabypatel.blogspot.com/2018/06/java-8-stream-practice-problems.html

259 | P A G E Satya Kaveti

13.Java UI (Applets/Swings)
In JAVA we write two types of programs or applications. They are standalone applications

(Local/Desktop) and distributed applications (web/Network)

Initially, before Servlets come into picture above 2 types of applications are implemented using

1. Swings → Developing Standalone Applications

2. Applets → Developing Distributed Applications

1. Applet Basics

” An applet is a JAVA program which runs in the context of browser or World Wide Web”

• To deal with applets we must import a package called java.applet.*

• It has only one class, whose fully qualified name is java.applet.Applet

In java.applet.Applet we have four life cycle methods.

1. public void init():

This is the method which is called by the browser only one time after loading the applet. In this

block we will perform onetime operations, like - initializing the parameters, obtaining the database

connection, obtaining the resources like opening the files, etc.

1. public void start():

Start method will be called each and every time. In this method we write the block of statement

which provides business logic.

2. public void stop():

Stop method is called by the browser when we minimize the window. In this method we write the

block of statements which will temporarily releases the resources which are obtained in init() method.

3. public void destroy():

This is the method which will be called by the browser when we close the window button or when

we terminate the applet application. In this method we write same block of statements which will

releases the resources permanently which are obtained in init method.

4. public void paint():

This is the method which will be called by the browser after completion of start method. This

method is used for displaying the data on to the browser. Paint method is internally call drawstring

method

1. Import java.applet.Applet package.

260 | P A G E Satya Kaveti

2. Choose the user defined public class that must extends java.applet.Applet class

3. Overwrite the life cycle methods of the applet if require.

4. Save the program and compile.

5. Run the applet: To run the applet we have two ways.

• Using HTML program

• Using applet viewer tool.

public class AppletDemo extends Applet {
 String s = "";

 public void init() {
 s = s + " -INIT";
 }
 public void start() {
 s = s + " -START";
 }
 public void paint(Graphics g) {
 g.drawString(s, 50, 50);
 }
 public void stop() {
 s = s + " -STOP";
 }
 public void destroy() {
 s = s + " -DESTROY";
 }
}

Compile the above Program, Run using any of below methods

1) Using HTML program

<APPLET code="AppletDemo " height=100 width=150>

2) Using applet viewer tool.

appletviewer AppletDemo.java

2. Swing Basics

We can develop standalone applications by using AWT (old) & Swing concepts. For developing any Swing

based application we need to extend either java.awt.Frame or javax.swing.JFrame

Difference between AWT and Swing

261 | P A G E Satya Kaveti

Java AWT Java Swing

AWT components are platform-dependent. Java swing components are platform-independent.

AWT components are heavyweight. Swing components are lightweight.

AWT doesn't support pluggable look and feel. Swing supports pluggable look and feel.

AWT provides less components than Swing. Swing provides more powerful components such as

tables, lists, scrollpanes, colorchooser, tabbedpane etc.

AWT doesn't follows MVC Swing follows MVC.

public class FrameDemo extends Frame {
 public FrameDemo() {
 setTitle("Demo");
 setSize(100, 100);
 setBackground(Color.black);
 setForeground(Color.red);
 setVisible(true);
 }

 public static void main(String[] args) {
 new FrameDemo();
 }
}

This is very basic program. We will explain the in detail in upcoming topics☺

262 | P A G E Satya Kaveti

3. AWT (abstract windowing toolkit)

See, java.awt.* & javax.swing.* both packages hierarchy almost same. Only difference is letter ‘J’

1. Component:

Component is any GUI Component like Label, Button, Etc

263 | P A G E Satya Kaveti

2. Container

Container is an empty space, where we place components

3.Window & Frame

264 | P A G E Satya Kaveti

5. Panel & Applet

4. Events Handling

As a part of GUI applications, we use to create two types of components. They are passive components

and active components

• Passive component, no interaction from the user. For example, Label.

• Active component there is an interaction from the user. For example, button, check box, etc

For developing Event handling, a class must have below steps

1. Internalize the Component

2. Create a class which implement Listener Interface

3. Component must register with Listener

4. Get the object of Event class

5. Implement event method.

//2.Create a class which implement Listener Interface
public class LoginDemo extends Frame implements ActionListener {

 public LoginDemo() {
 //1. Internalize the Component

 Button login = new Button("Login");

 // 3.Component must register with Listener

 login.addActionListener(this);
 }
 // 4.Get the object of Event class
 public void actionPerformed(ActionEvent e) {
 //5.Implement event method
 }

}

265 | P A G E Satya Kaveti

Every interactive component must have a predefined listener whose general notation is xxx listener.

Button java.awt.event.ActionListener

Choice java.awt.event.ItemListener

TextField java.awt.event.TextListener

TextArea java.awt.event.TextListener

Scrollbar java.awt.event.AdjustmentListener

Each and every interactive component must be registered and unregistered with particular event and

Listener. The general form of registration and un-registration methods is as follows:

public void addxxxListener (xxxListener);
public void removexxxListener (xxxListener);

Whenever we interact any active component, the corresponding active component Event class object will

be created. That object contains two details:

• Name of the component.

• Reference of the component.

The general form of every Event class is xxxEvent.

Component name Event name

Button java.awt.event.ActionEvent

choice java.awt.event.ItemEvent

textField java.awt.event.TextEvent

textArea java.awt.event.TextEvent

scrollbar java.awt.event.AdjustmentEvent

All these methods are present in xxxLisnter classes. We have to implement appropriate method

266 | P A G E Satya Kaveti

5. Components

1. Label

2. Button

3. Text Field (TextArea)

267 | P A G E Satya Kaveti

4.TextComponet

5.Layout Managers

268 | P A G E Satya Kaveti

1. Import the appropriate packages.

2. Choose the appropriate class and it must extend java.awt.Frame and implements appropriate

Listener if required.

3. Identify & declare components as data members in the top of the class.

4. Set the title for the window.

5. Set the size of the window.

6. Create Objects of the components in the Constructor which are identified in step 3.

7. Add the created components to container.

8. Register the events of the appropriate interactive component with appropriate Listener.

9. Make the components to be visible (setvisible(true)).

10. Define the undefined methods in the current class which is coming from appropriate Listener.

11. Write functionality to GUI component in that method

269 | P A G E Satya Kaveti

public class LoginDemo extends Frame implements ActionListener {
 // 1. Decalring components
 Label l1, l2, status;
 TextField t1, t2;
 Button login;

 public LoginDemo() {
 // 4,5 Setting title & Size
 setSize(200, 200);
 setTitle("Login");

 // 6.creating Component Objects
 l1 = new Label("Username : ");
 l2 = new Label("Password : ");
 status = new Label("Status");
 t1 = new TextField(50);
 t2 = new TextField(50);
 login = new Button("Login");

 // 7.adding componets to container
 add(l1);
 add(t1);
 add(l2);
 add(t2);
 add(login);
 add(status);
 setLayout(new FlowLayout());

 // 8.reister with Listener
 login.addActionListener(this);
 setVisible(true);// 9.setvisble
 }

 @Override // 10
 public void actionPerformed(ActionEvent e) {
 if (e.getSource() == login) {
 // 11.implemeting Logic
 status.setText(t1.getText() + " : " + t2.getText());
 }
 }

 public static void main(String[] args) {
 new LoginDemo();
 }
}

Similarly we have no.of components but the process of each one is similar.

270 | P A G E Satya Kaveti

1. Import appropriate packages for GUI components (java.awt.*) providing functionality to GUI

components (java.awt.event.*) and for applet development (java.applet.Applet).

2. Every user defined class must extend either Frame or Applet and it must implement appropriate

Listener if required.

3. Identify which components are required to develop a GUI application.

4. Use life cycle methods (init, start, destroy) in the case of applet, use default Constructor in the case of

Frame for creating the components, adding the components, registering the components, etc.

5. Set the title of the window.

6. Set the size of the window.

7. Set the layout if required.

8. Create & initialize those components which are identified.

9. Add the created components to container.

10. Every interactive component must be registered with appropriate Listener.

11. Make the components to be visible in the case of Frame only.

12. Implement or define the abstract method which is coming from appropriate Listener.

public class AppletClass extends Applet implements ActionListener {
 Label l;
 Button a, b, c, d, e;

 public void init() {
 setSize(300, 300);
 a = new Button("NORTH EXIT");
 b = new Button("SOUTH");
 c = new Button("WEST");
 d = new Button("EAST");
 l = new Label("OK", Label.CENTER);

 add(a, "North");
 add(b, "South");
 add(c, "East");
 add(d, "West");
 add(l, "Center");
 }// init

 public void start() {

 a.addActionListener(this);
 b.addActionListener(this);
 c.addActionListener(this);
 d.addActionListener(this);

 // defaultCloseOperation(EXIT_ON_CLOSE);
 setVisible(true);
 }// Start

271 | P A G E Satya Kaveti

 public void actionPerformed(ActionEvent ae) {

 if (ae.getSource() == a) {
 l.setText("NORTH is Clicked");
 // System.exit(0);
 }

 if (ae.getSource() == b) {
 l.setText("SOUTH is Clicked");
 }

 if (ae.getSource() == c) {
 l.setText("WEST is Clicked");
 }

 if (ae.getSource() == d) {
 l.setText("EAST is Clicked");
 }

 }
}

Features by Version

Java 4 (2002)

RMI(1.1V)

RMI used to invoke methods which is running on one JVM from another JVM

272 | P A G E Satya Kaveti

1. Stub: The stub is an object, acts as a gateway for the client side. If we invoke method on the stub

object, it does the following tasks:

• It initiates a connection with remote Virtual Machine (JVM),

• It writes and sends (marshals) the parameters to the remote Virtual Machine (JVM),

• It waits for the result

• It reads (unmarshals) the return value or exception.

2. Skeleton: The skeleton is an object, acts as a gateway for the server-side object. All the incoming

requests are routed through it. When the skeleton receives the incoming request, it does following tasks

• It reads the parameter for the remote method

• It invokes the method on the actual remote object, and

• It writes and transmits (marshals) the result to the caller.

1. Create an Interface by implementing Remote interface with methods you want to share

2. Create a Class by extending UnicastRemoteObject & also implement above methods

3. Create a class to Share the Remote Class Object over the Network

public interface RemoteInterface extends Remote {
public String show(String name);

}

public class RemoteClass extends UnicastRemoteObject implements RemoteInterface {
 protected RemoteClass() throws RemoteException {
 super();
 }
 @Override
 public String show(String name) {
 return "Your Name Is : " + name;
 }
}

public class RemoteObject {
public static void main(String[] args) throws RemoteException, MalformedURLException{
 RemoteInterface obj = new RemoteClass();
 Naming.rebind("obj", obj);
 }
}

273 | P A G E Satya Kaveti

public class Client {
 public static void main(String args[]) throws Exception{

 RemoteInterface st=(RemoteInterface) Naming.lookup("rmi://"+args[0]+ "/obj");
 System.out.println(st.show("Satya"));
 }
}

JDBC(1.1V) -

We know it already.

Assertions

Assert keyword is used to check the given statement is TRUE or FALSE

There are two types of using assert in our program

1. assert (boolean expression); //Simple assert

2. assert (boolean expression1) : (anytype expression2); //Augmented assert

Assertion is disabled by default. To enable we have to use java –ea classname or -enableassertions

The main advantage of assert is for DEBUGGING. If we write s.o.p’s for debugging after completion of

code we have to manually remove the s.o.p’s. But if we use assertions for debugging after completion of

code, we don’t need to remove the code, just DISABLING assertion is enough.

assert (boolean expression);

• Here the Expression Should be Boolean type.

• If expression is TRUE it won’t return anything,

• Otherwise it will throws Runtime Exception: java.lang.AssertionError: Default message

public class AssertDemo {
public static void main(String[] args) {
 int i = 100;
 assert (i>10);
 System.out.println(i); //100
 }
}

If we give int i = 10; it will throws java.lang.AssertionError: Default message

assert (boolean expression1): (anytype expression2); //Agumented assert

Expression2→ is used to Display some message along with Error Message

• Here the 1st Expression Should be Boolean type, 2nd Expression can be Any type

• If expression is TRUE it won’t return anything,

• Otherwise it will throws Runtime Exception: java.lang.AssertionError: expression2

274 | P A G E Satya Kaveti

Second parameter mostly used for customized error message

public class AssertDemo {
 public static void main(String[] args) {
 int i = 1;
 assert (i > 10) : "This is Anytype";
 System.out.println(i);
 }
}
Exception in thread "main" java.lang.AssertionError: This is Anytype

 at features.AssertDemo.main(AssertDemo.java:6)

• To ENABLE assertions, we have to use java –ea classname or –enableassertions

• To DISABLE assertions, we have to use java –da classname or –disableassertions

• To ENABLE assertions in ECLIPSE File → Run As → Run Config.,>Vm args = -ea > Save>Run

RegExp

Java.util.regex or Regular Expression is an API to define pattern for searching or manipulating

strings. It is widely used to define constraint on strings such as password and email validation.

It provides following classes are widely used in java regular expression.

• Pattern class - it represents the Complied pattern

• Matcher class - used for performing matching operations on complied pattern

• PatternSyntaxException - checks syntax error in a regular expression pattern.

1. Pattern class it represents the Complied pattern

Method Description

static Pattern compile(String regex) Compiles given regex and return the instance of pattern.

Matcher matcher(CharSequence input) Retunes char sequence to be compare with patten

boolean matches(String regex, String charSeqence) Directly we can compare Expression with Sequence

String pattern() returns the regex pattern.

2. Matcher class -used for performing matching operations on complied pattern

Method Description

boolean matches() Test whether the regular expression matches the pattern.

boolean find() Finds the next expression that matches the pattern.

boolean find(int start) Finds the next expression that matches the pattern from the given start number.

String group() Returns the matched subsequence.

int start() Returns the starting index of the matched subsequence.

int end() Returns the ending index of the matched subsequence.

int groupCount() Returns the total number of the matched subsequence.

public class REDemo {

275 | P A G E Satya Kaveti

 public static void main(String[] args) {
 Pattern p = Pattern.compile(".a");// only 2 char end with a
 Matcher m = p.matcher("sa");

 boolean b1 = m.matches();
 System.out.println(b1);//TRUE

 boolean b2 = Pattern.matches("s.", "sa"); //only 2 char Start with s
 System.out.println(b2); //TRUE
 }
}

Character Class Description

[abc] a, b, or c (simple class)

[^abc] Any character except a, b, or c (negation)

[a-zA-Z] a through z or A through Z, inclusive (range)

[a-d[m-p]] a through d, or m through p: [a-dm-p] (union)

[a-z&&[def]] d, e, or f (intersection)

[a-z&&[^bc]] a through z, except for b and c: [ad-z] (subtraction)

[a-z&&[^m-p]] a through z, and not m through p: [a-lq-z](subtraction)

The quantifiers specify the number of occurrences of a character.

Regex Description

X? X occurs once or not at all

X+ X occurs once or more times

X* X occurs zero or more times

X{n} X occurs n times only

X{n,} X occurs n or more times

X{y,z} X occurs at least y times but less than z times

The regular expression metacharacters work as a short code.

Regex Description

. (dot) Any character (may or may not match terminator)

\d Any digits, short of [0-9]

\D Any non-digit, short for [^0-9]

\s Any whitespace character, short for [\t\n\x0B\f\r]

\S Any non-whitespace character, short for [^\s]

\w Any word character, short for [a-zA-Z_0-9]

276 | P A G E Satya Kaveti

\W Any non-word character, short for [^\w]

\b A word boundary

\B A non-word boundary

public class REDemo {
public static void main(String[] args) {

S.o.p("1.Regex Character classes\n--------------");
S.o.p(Pattern.matches("[amn]", "abcd"));//false (not a or m or n)
S.o.p(Pattern.matches("[amn]", "a"));//true (among a or m or n)
S.o.p(Pattern.matches("[amn]", "ammmna"));//false(m &a morethan once)

S.o.p("\n2.Regex Quantifiers\n--------------");
S.o.p("? quantifier");
S.o.p(Pattern.matches("[amn]?", "a"));//true (a or m or n comes one time)
S.o.p(Pattern.matches("[amn]?", "aaa"));//false (a comes more than one time)
S.o.p(Pattern.matches("[amn]?", "aammmnn"));//false (a m n comes more than one time)

S.o.p("+ quantifier");
S.o.p(Pattern.matches("[amn]+", "a"));//true (a or m or n once or more times)
S.o.p(Pattern.matches("[amn]+", "aaa"));//true (a comes more than one time)

S.o.p("\n3.Regex Metacharacters\n--------------\n");
S.o.p(Pattern.matches("\\d", "abc"));//false (non-digit)
S.o.p(Pattern.matches("\\d", "1"));//true (digit and comes once)
S.o.p(Pattern.matches("\\d", "4443"));//false (digit but comes more than 1)

 }
}

Logging API

In common we use System.out.println() statements for DEBUGGING. But these are printed at console

and they will be lost after closing the Console.so these results are not savable

To overcome these problems apache released Log4j. With Log4j we can store the flow details of our

Java/J2EE in a file or databases

We have mainly 3 components to work with Log4j

• Logger class -for printing LOG messages

• Appender interface -to store messages in Files/Databases

• Layout -which Format the message should Save (HTML,Text,etc)

1. Logger class

• Logger is a class, in org.apache.log4j.*

• We need to create Logger object one per java class, it will enable Log4j in our java class

• Logger methods are used to generate log statements in a java class instead of sop’s

To get an object of Logger class, we need to call a static factory method

static Logger log = Logger.getLogger(YourClassName.class.getName())

We have following methods to print debugging statements on Logger

1. log.debug (“ ”)

2. log.info (“”)

3. log.warn (“”)

277 | P A G E Satya Kaveti

4. log.error (“”)

5. log.fatal (“”)

Priority Order: debug < info < warn < error < fatal

2. Appender interface

Appender job is to write the messages into the external file or database or SMTP. In log4j we have

different Appender implementation classes

• ConsoleAppender [Writing into console]

• FileAppender [writing into a file]

• JDBCAppender [For Databases]

• SMTPAppender [sent logs via Mails]

• SocketAppender [For remote storage]

3. Layout

This component specifies the format in which the log statements are written into the destination by

the appender

• SimpleLayout

• PatternLayout

• HTMLLayout

• XMLLayout

public class LogDemo {
public static void main(String[] args) {
 Logger logger = Logger.getLogger(LogDemo.class.getName());
 Layout layout = new SimpleLayout();
 Appender a = new ConsoleAppender(layout);
 logger.addAppender(a);

 logger.debug("Debug Message");
 logger.info("Info Message");
 logger.warn("Warning Message");
 logger.error("Error Message");
 logger.fatal("Fatal Message");
}
}

In above Example we used Layout, Appenders programmatically which is NOT RECOMMENDED. We

have to use log4j.properties to configure those.

log4j.rootLogger=DEBUG, CONSOLE, LOGFILE
log4j.appender.CONSOLE=
log4j.appender.CONSOLE.layout=
log4j.appender.CONSOLE.layout.ConversionPattern=
log4j.appender.LOGFILE=
log4j.appender.LOGFILE.File=
log4j.appender.LOGFILE.MaxFileSize=
log4j.appender.LOGFILE.layout=
log4j.appender.LOGFILE.layout.ConversionPattern=

If we use. properties file, we no need to import any related classes into our java class

if we wrote log4j.rootLogger = WARN,abc then it will prints the messages in l.warn(), l.error(), l.fatal()

and ignores l.debug(), l.info(). Means >Warn level only it prints.

278 | P A G E Satya Kaveti

public class LogDemo {
 static Logger logger = Logger.getLogger(LogDemo.class.getName());
 public static void main(String[] args) {
 logger.debug("Debug Message");
 logger.info("Info Message");
 logger.warn("Warning Message");
 logger.error("Error Message");
 logger.fatal("Fatal Message");
 }
}

Log4j.properties

log4j.rootLogger = DEBUG,abc
log4j.appender.abc = org.apache.log4j.FileAppender
log4j.appender.abc.file = logfile.log
log4j.appender.abc.layout = org.apache.log4j.SimpleLayout

logfile.log

DEBUG - Debug Message
INFO - Info Message
WARN - Warning Message
ERROR - Error Message
FATAL - Fatal Message

The above example only saves log’s to file. You can’t see logs on console. if want both use below. Use

same java program but change log4j.properties file.

log4j.rootLogger=DEBUG,CONSOLE,LOGFILE
log4j.appender.CONSOLE=org.apache.log4j.ConsoleAppender
log4j.appender.CONSOLE.layout=org.apache.log4j.PatternLayout
log4j.appender.CONSOLE.layout.ConversionPattern=%-4r [%t] %-5p %c %x – %m%n
log4j.appender.LOGFILE=org.apache.log4j.RollingFileAppender
log4j.appender.LOGFILE.File=logfile.log
log4j.appender.LOGFILE.MaxFileSize=1kb
log4j.appender.LOGFILE.layout=org.apache.log4j.PatternLayout
log4j.appender.LOGFILE.layout.ConversionPattern=[%t] %-5p %c %d{dd/MM/yyyy HH:mm:ss} – %m%n
[main] DEBUG log.LogDemo 15/09/2016 19:23:38 â?? Debug Message
[main] INFO log.LogDemo 15/09/2016 19:23:38 â?? Info Message
[main] WARN log.LogDemo 15/09/2016 19:23:38 â?? Warning Message
[main] ERROR log.LogDemo 15/09/2016 19:23:38 â?? Error Message
[main] FATAL log.LogDemo 15/09/2016 19:23:38 â?? Fatal Message

Java 5 (2005)

Annotations

Java Annotation is a tag that represents the metadata i.e. attached with class, interface, methods or fields

to indicate some additional information which can be used by java compiler and JVM.

Annotations have several uses, below are few among them:

• Information for the compiler — Annotations can be used by the compiler to detect errors or

suppress warnings.

• Compile-time and deployment-time processing — Software tools can process annotation

information to generate code, XML files, and so forth. (Spring Autowire, Java Doc kind of)

• Runtime processing — Some annotations are available to be examined at runtime

279 | P A G E Satya Kaveti

The annotation can include elements(parameters), which can be named or unnamed, and we need to

provide values for those elements:

@Author(
 name = "Benjamin Franklin",
 date = "3/27/2003"
)
class MyClass() { ... }

If there is just one element named value, then the name can be omitted, as in:

@SuppressWarnings("unchecked")
void myMethod() { ... }

If the annotation has no elements, then the parentheses can be omitted

 example : @Override

It is also possible to use multiple annotations on the same declaration:

@Author(name = "Jane Doe")
@EBook
class MyClass { ... }

If the annotations have the same type, then this is called a repeating annotation Repeating annotations

are supported as of the Java SE 8 release.

@Author(name = "Jane Doe")
@Author(name = "John Smith")
class MyClass { ... }

Java Custom annotations or Java User-defined annotations are easy to create and use.

The @interface element is used to declare an annotation.

• Method should not throw Exception

• Method should not have any parameter.

• Method should return something

• It may assign a default value to the method.

@interface MyAnnotation{
int value() default 0;
}

Suppose Every class in a given Project should contain author info. Writing Author info in every class is

difficult like below

public class GenrateWorkSheet extends DataList {
 // Author: John Doe
 // Date: 3/17/2002
 // Current revision: 6
 // Last modified: 4/12/2004
 // By: Jane Doe
 // Reviewers: Alice, Bill, Cindy

 // class code goes here
}

By Using Annotation, we can provide above information. For doing this we need to create an annotation

& all property should define using methods.

@interface AuthaorInfo {
 String author();
 String date();
 int currentRevision() default 1;

280 | P A G E Satya Kaveti

 String lastModified() default "N/A";
 String lastModifiedBy() default "N/A";
 // Note use of array
 String[] reviewers();
}

Once annotation ready, you can write that annotation top of each class with values

@AuthaorInfo (
 author = "John Doe",
 date = "3/17/2002",
 currentRevision = 6,
 lastModified = "4/12/2004",
 lastModifiedBy = "Jane Doe",
 // Note array notation
 reviewers = {"Alice", "Bob", "Cindy"}
)
public class Generation3List extends Generation2List {

// class code goes here
}

Autoboxing

• The automatic conversion of primitive data types into its equivalent Wrapper type is known as

boxing and opposite operation is known as unboxing.

• Up to JDK 1.4, all the data structures of Java stores only objects and when retrieved returns

objects. Autoboxing permits to store data types directly in DS and retrieve back data types.

• If a method (remember only method – not direct) requires Integer Object value, we can

directly pass primitive value without issue. Autoboxing will take care about these.

We can also do direct initializations (1.8 V)

Integer i = 10;// it will create Integer value of 10 using Autoboxing
int j = i;// ;// it will convert Integer to int using Autoboxing

Previously it shows

Integer i = 10;// it will create Integer value of 10 using Autoboxing
int j = i;//But we cant assign int to Integer Type mismatch: cannot convert from Integer to int

Generics

Generics are introduced in Java 1.5 Version to solve Type-safety & Type-casting problems
public class Student {
 public static void main(String[] args) {
 ArrayList l = new ArrayList(); //1
 l.add("Satya");

 String s = (String) l.get(0); //2
 System.out.println(s);
 }
}

• line1: ArrayList is NOT generic type – so we can add any type of elements results Type-Safety

• line2: It returns added String data as Object. So manually we have to Type-cast to String

To resolve above problems Generics are introduced
public class Student {
 public static void main(String[] args) {
 ArrayList<String> l = new ArrayList<String>(); // 1
 l.add("Satya");

 String s = l.get(0); // 2
 System.out.println(s);

281 | P A G E Satya Kaveti

 }
}

Generics can be used in following areas

• Interface level

• Class level

• Constructor level

• Method level

Sample Generic class

class SmlGen<T> {
 T obj;

 void add(T obj) {
 this.obj = obj;
 }
 T get() {
 return obj;
 }
}

The <T> indicates that it can refer to any type (like String, Integer, and Student etc.). The type you specify

for the class, will be used to store and retrieve the data

In above <T> refers any type. Similarly, we have to follow below naming conventions to where to use

which Naming conventions. It improves readability. These are NOT compulsory but recommended to use

1. T – Type - Any Type, can be use any level (Class, Interface, Methods...)

2. N – Number - Indicates it allows Number Types (int,long,float etec)

3. E – Element - Exclusively used in Collection (ArrayList<E>)

4. K – Key - Map KEY area

5. V – Value - Map Value area

6. S, U,V etc - 2nd, 3rd, 4th types

 1. Generics at Class /Method /Constructor level

A generic class is defined with the following format:

class name<T1, T2, ..., Tn> {

 }

class SmlGen<T> { //1.Class Level
 T obj;
 public SmlGen() {
 }
 public SmlGen(T obj) { //2.Constrcutor Level
 this.obj = obj;
 }

 void add(T obj) {
 this.obj = obj;
 }
 T get() { //3.Method Level
 return obj;
 }
}
public class Student {
 public static void main(String[] args) {

282 | P A G E Satya Kaveti

 SmlGen<String> s = new SmlGen<String>();
 s.add("Satya");
 System.out.println(s.get());
 }
}

2. Generics at Interface level

A generic interface is same as generic class.

public interface List<T> extends Collection<T> {
...
}

? Operator is used to represents wildcards in generics. We have two types of Wildcards

1) Unbounded wildcards

2) Bounded wildcards

1. Unbounded wildcards

Unbounded wildcard like <?> - means the generic can be any type.it is not bounded with any type.

2. Bounded wildcards

• <? extends T> and <? super T> are examples of bounded wildcards

• <? extends T> : means it can accept the Child class Objects of the type<T>

• <? super T> : means it can accept the Parent class Objects of the type<T>

Covariant Return Type (Java 5)

Before Java5, it was not possible to override any method by changing the return type. But, since Java5, it

is possible to override method by changing the return type. If subclass overrides any method whose

return type is Non-Primitive(Object type), it can changes its return type to subclass type.

Enhanced for loop

• For-each loop introduced in Java 1.5 version as an enhancement of traditional for-loop

• Main advantage is we don’t need to write extra code traverse over array / collections

• Mainly used for traverse on Array Elements & Collection Elements

for (Datatype temp_variable : Array/Collection Variable){}

public class Foreach {
 public static void main(String[] args) {
 int i[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
 for (int b : i) {
 System.out.print(b+", ");
 }
 }
}

1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

public class Foreach {
 public static void main(String[] args) {
 ArrayList<String> l = new ArrayList<String>();

283 | P A G E Satya Kaveti

 l.add("A");
 l.add("B");
 l.add("C");
 l.add("D");
 l.add("E");
 for (String s : l) {
 System.out.print(s + ",");
 }
 }
}

A, B, C, D, E

Var-args

Sometimes we don’t know no.of arguments used in our method implementation. Var-args are introduced

in 1.5v to solve these type of situations

static returntype methodname(Datatype … variblename)

public class Varargs {
 static void show(String… var) {
 System.out.println(“Show() called”);
 }
 public static void main(String[] args) {
 Varargs v = new Varargs();
 v.show();
 v.show(“A”);
 v.show(“A”, “B”, “C”);
 }
}

Show() called
Show() called
Show() called

1. Var-args must be as the last argument in method signature

2. Only one Var-arg is allowed per a Method

Enums

• enums improves type safety

• easily used in switch

• enum can be traversed

• enum class is a just like normal class, we can write FIELDS, Constructors, Methods in enum class

284 | P A G E Satya Kaveti

• enum CANNOT extend any class because it internally extends Enum class

• enum may implement many interfaces

ALL fields in Enums by Default PUBLIC STATIC FINAL

enum Days {

 MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY

}

public class EnumDemo {

 public static void main(String[] args) {

 for (Days s : Days.values()) {

 System.out.print(s + ",");

 }

 }

}

MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY,

To write Enum with values we have to follow below steps

• Enum values must be placed inside () → MONDAY(1)

• Take public instance variable to Store enum value → public int Enum_Value;

• Write private constructor which can take enum value as argument→ private Days(int Enu_Val)

enum Days {
MONDAY(1), TUESDAY(2), WEDNESDAY(3), THURSDAY(4), FRIDAY(5), SATURDAY(6), SUNDAY(7);

 public int Enum_Value;
 private Days(int Enum_Value) {
 this.Enum_Value = Enum_Value;
 }
}
public class EnumDemo {
 public static void main(String[] args) {
 for (Days s : Days.values()) {
 System.out.println(s + ":"+s.Enum_Value);
 }
 }
}

MONDAY :1, TUESDAY:2, WEDNESDAY:3, THURSDAY :4, FRIDAY:5, SATURDAY:6 SUNDAY:7

Static imports

The static import feature of Java 5 facilitates the java programmer to access any static member of a class

directly. There is no need to qualify it by the class name.

import static java.lang.System.*;

public class StaticImport {
 public static void main(String[] args) {
 out.println("Static Import");
 }
}

C-lang printf()

printf() is an extra method added to PrintStream class from JDK 1.5 version. printf() is used to print at

command-prompt

public class PrintfDemo
{

285 | P A G E Satya Kaveti

 public static void main(String args[])
 {
 boolean hot = false;
 char alphabet = 'A';
 int rate = 5;
 float temperature = 12.3456789f;

 System.out.printf("The boolean hot: %b", hot); // b for boolean
 System.out.printf("\nThe char alphabet: %c", alphabet); // c for char
 System.out.printf("\nThe int rate: %d", rate); // d for int
 System.out.printf("\nThe float marks is %f", temperature); // f for float

 System.out.printf("\n value prefixed with 4 zeros: %04d", rate);// filling with zeros
 System.out.printf("\float temp %.3f", temperature); // precision to three decimal values
 System.out.printf("\nThe float temperature in exponential form: %e", temperature);
 System.out.printf("\n%s, %s and also %s belong to java.lang package", "System","String","Math");
 System.out.printf("\ntemperature is %4.2f", temperature); // width is 4 and precision to 2 decimal
points
 }
}

Java6 not many features

Java 7 (2011)

Underscores in Numeric Literals (Java 7)

Java allows you to use underscore in numeric literals.

• You cannot use underscore at the beginning or end of a number.

• You cannot use underscore adjacent to a decimal point in a floating-point literal. (10._0)

o You cannot use underscore prior to an F or L suffix (long a = 10_100_00_L;)

o added in Java 7. You can have underscores in numbers to make them easier to read:

int million1 = 1000000;
int million2 = 1_000_000;

double notAtStart = _1000.00; // DOES NOT COMPILE
double notAtEnd = 1000.00_; // DOES NOT COMPILE
double notByDecimal = 1000_.00; // DOES NOT COMPILE

String in switch statement (Java 7)
public class StringInSwitchStatementExample {
 public static void main(String[] args) {
 String game = "Cricket";
 switch(game){
 case "Hockey":
 System.out.println("Let's play Hockey");
 break;
 case "Cricket":
 System.out.println("Let's play Cricket");
 break;
 case "Football":
 System.out.println("Let's play Football");
 }
 }
}

286 | P A G E Satya Kaveti

The try-with-resources (Java 7)

• try-with-resources statement is a try statement that declares one or more resources. The resource

is as an object that must be closed after finishing the program.

• The try-with-resources statement ensures that each resource is closed at the end of the statement

execution.

• You can pass any object that implements java.lang.AutoCloseable, which includes all objects

which implement java.io.Closeable

Caching Multiple Exceptions by single catch (Java 7)

Java allows you to catch multiple type exceptions in a single catch block. It was introduced in Java 7 and

helps to optimize code. You can use vertical bar (|) to separate multiple exceptions in catch block.

Diamond operator <>, removes right side of generics

you can replace the type arguments with an empty set of type parameters (<>). This pair of angle

brackets is informally called the diamond.

The following approach is used in Java 6 and prior version.

Ex. List<Integer> list = new List<Integer>();

Now, you can use the following new approach introduced in Java 7.

Ex. List<Integer> list = new List<>(); // Here, we just used diamond

Java 8 (2014)

Functional Interfaces (Java 8)

An Interface that contains exactly one abstract method is known as functional interface. It can have any

number of default, static methods but can contain only one abstract method. It can also declare methods

of object class

@FunctionalInterface
interface sayable{
 void say(String msg);
}

Lambda Expressions (Java 8)

The Lambda expression is used to provide the implementation of an interface which has functional

interface

Stream (Java 8)

Another major change introduced Java 8 Streams API, which provides a mechanism for processing a set

of data in various ways that can include filtering, transformation, or any other way that may be useful to

an application.

Streams API in Java 8 supports a different type of iteration where you simply define the set of items to be

processed, the operation(s) to be performed on each item, and where the output of those operations is to

be stored.

287 | P A G E Satya Kaveti

Default Methods & Static methods Interface (Java 8)

Java 8 allows you to add non-abstract methods in interfaces. These methods must be declared default

methods. Default methods enable you to add new functionality to the interfaces of your libraries and

ensure binary compatibility with code written for older versions of those interfaces.

public interface Moveable {
 default void move(){
 System.out.println("I am moving");
 }
}
static void isNull(String str) {
 System.out.println("Interface Null Check");
}

If class willingly wants to customize the behavior of move() method then it can provide it’s own custom

implementation and override the method.in this case we must remove default keyword.

Static methods: Java interface static method is similar to default method except that we can’t override

them in the implementation classes.

Java 8 Date/Time API (Java 8)

Date class has even become obsolete. The new classes intended to replace Date class

are LocalDate, LocalTime and LocalDateTime.

• The LocalDate class represents a date. There is no representation of a time or time-zone.

• The LocalTime class represents a time. There is no representation of a date or time-zone.

• The LocalDateTime class represents a date-time. There is no representation of a time-zone

LocalDate localDate = LocalDate.now();
LocalTime localTime = LocalTime.of(12, 20);
LocalDateTime localDateTime = LocalDateTime.now();
OffsetDateTime offsetDateTime = OffsetDateTime.now();
ZonedDateTime zonedDateTime = ZonedDateTime.now(ZoneId.of("Europe/Paris"));

Duration class is a whole new concept brought first time in java language. It represents the time

difference between two time stamps.
Duration duration = Duration.ofMillis(5000);

duration = Duration.ofSeconds(60);

duration = Duration.ofMinutes(10);

Duration deals with small unit of time such as milliseconds, seconds, minutes and hour. They are more

suitable for interacting with application code. To interact with human, you need to get bigger

durations which are presented with Period class.
Period period = Period.ofDays(6);

period = Period.ofMonths(6);

period = Period.between(LocalDate.now(), LocalDate.now().plusDays(60));

Optional Class

• Every Java Programmer is familiar with NullPointerException. We need too many null checks in

our program.

• So, to overcome this, Java 8 has introduced a new class Optional in java.util package. It can

help in writing a neat code without using too many null checks.

• By using Optional, we can specify alternate values to return or alternate code to run.

https://www.geeksforgeeks.org/null-pointer-exception-in-java/

288 | P A G E Satya Kaveti

The Optional class has many methods but only two methods are most used in the coding. Those two

are isPresent() and get() methods.

• isPresent() returns true if the optional has non-null values, otherwise false.

• get() returns the actual value from Optional object. If optional has null value means it is

empty. In such a case, NoSuchElementException is thrown.

Optional<Anthology> findById(Integer id);

Anthology anthology = repo.findById(anthologyId).orElseThrow(

() -> new ResourceNotFoundException("Anthology not found for this id :: " + anthologyId));

Java 9 (2017)

JShell: The Java Shell (REPL)

It is an interactive Java Shell tool; it allows us to execute Java code from the shell and shows output

immediately. JShell is a REPL (Read Evaluate Print Loop) tool and run from the command line.

Module System (Project Jigsaw)

• In earlier versions of Java, there was no concept of module to create modular Java applications.

that why size of application increased and difficult to move around. Even JDK itself was too heavy

in size, in Java 8, rt.jar file size is around 64MB.

• To deal with situation, Java 9 restructured JDK into set of modules so that we can use only

required module for our project

289 | P A G E Satya Kaveti

• Create a file module-info.java, inside this file, declare a module by using module identifier and

provide module name same as the directory name that contains it. In our case, our directory

name is com.javatpoint.

Interface Private Methods

In Java 9, we can create private methods inside an interface. Interface allows us to declare private

methods that help to share common code between non-abstract methods / Default methods.

interface Sayable{
 default void say() {
 saySomething();
 }
 //Private method inside interface
 private void saySomething() {
 System.out.println("Hello... I'm private method");
 }
}
public class PrivateInterface implements Sayable {
 public static void main(String[] args) {
 Sayable s = new PrivateInterface();
 s.say();
 }
}

Multi-Release JAR Files

Previously, you had to package all classes into a jar file and drop in the class path of another application,

which wish to use it.

Using multi-release feature, now a jar can contain different versions of a class – compatible to

different JDK releases. The information regarding different versions of a class, and in which JDK version

which class shall be picked up by class loaded, is stored in MANIFEST.MF file.

Java10 (March 2018)

Local Variable Type Inference

Java has now var style declarations. It allows you to declare a local variable without specifying its type.

The type of variable will be inferred from type of actual object created. It claims to be the only real feature

for developers in JDK 10

var str = "Hello world";

Time-Based Release Versioning

On printing java version, it just shows version number only

E:\Users\Kaveti_S>java -version
java version "1.8.0_202-ea"

But in 10, it will show the Date of version release The new pattern of the Version number is:

$FEATURE. $INTERIM. $UPDATE. $PATCH
java version "10" 2018-03-20

Garbage Collector Interface

Anyone wanting to implement a new GC would require knowledge about all these various places, as well

as how to extend the various classes for their specific needs.

290 | P A G E Satya Kaveti

Java 11 (September 2018)

They’ve changed the licensing and support model which means if you download the Java 11 Oracle JDK, it

will be paid for commercial use

Does that mean that I need to pay for Java from now on?

NO. Not necessarily unless you download the Oracle JDK and use it in production

You can use it in developing stages but to use it commercially, you need to buy a license. If you don’t, you

can get an invoice bill from Oracle any day!

Java 10 was the last free Oracle JDK that could be downloaded.

Running Java File with single command

One major change is that you don’t need to compile the java source file with javac tool first. You can

directly run the file with java command, and it implicitly compiles

Java String Methods

isBlank()

 System.out.println(" ".isBlank()); //true

 String s = "Anupam";
 System.out.println(s.isBlank()); //false

repeat(int)

The repeat method simply repeats the string that many numbers of times as mentioned in the method in

the form of an int.

 String str = "=".repeat(2);
 System.out.println(str); //prints ==

Java 12 (March 2019)

Java 12 got a couple of new features and clean-ups, but the only ones worth mentioning here are

Unicode 11 support and a preview of the new switch expression, which you will see covered in the next

section.

Java 13 (September 2019)

You can find a complete feature list here, but essentially, you are getting Unicode 12.1 support, as well

as two new or improved preview features (subject to change in the future):

1.Switch Expression (Preview)

Switch expressions can now return a value. And you can use a lambda-style syntax for your expressions,

//Old switch statements looked like this:
switch(status) {
 case SUBSCRIBER:
 // code block
 break;
 case FREE_TRIAL:

https://www.journaldev.com/20395/java-10-features
https://www.oracle.com/technetwork/java/javase/12-relnote-issues-5211422.html
https://www.oracle.com/technetwork/java/13-relnote-issues-5460548.html

291 | P A G E Satya Kaveti

 // code block
 break;
 default:
 // code block
}

//Whereas with Java 13, switch statements can look like this:
boolean result = switch (status) {

case SUBSCRIBER -> true;
case FREE_TRIAL -> false;
default -> throw new IllegalArgumentException("something is murky!");

};

2.Multiline Strings (Preview)

String should start with three Quotes “””

String htmlBeforeJava13 = "<html>\n" +
 " <body>\n" +
 " <p>Hello, world</p>\n" +
 " </body>\n" +
 "</html>\n";

String htmlWithJava13 = """
 <html>
 <body>
 <p>Hello, world</p>
 </body>
 </html>
 """;

Java 14 (March 2020)

• JEP 305 – Pattern Matching for instanceof (Preview)

• JEP 368 – Text Blocks (Second Preview)

• JEP 358 – Helpful NullPointerExceptions

• JEP 359 – Records (Preview)

• JEP 361 – Switch Expressions (Standard)

• JEP 343 – Packaging Tool (Incubator)

• JEP 345 – NUMA-Aware Memory Allocation for G1

• JEP 349 – JFR Event Streaming

• JEP 352 – Non-Volatile Mapped Byte Buffers

• JEP 363 – Remove the Concurrent Mark Sweep (CMS) Garbage Collector

• JEP 367 – Remove the Pack200 Tools and API

• JEP 370 – Foreign-Memory Access API (Incubator)

Java 15 (September 2020)

• 1. JEP 339: Edwards-Curve Digital Signature Algorithm (EdDSA)

• 2. JEP 360: Sealed Classes (Preview)

Sealed Classes or Interfaces have the power to disallow themselves to be implemented or overridden

by any object, which is not one of a given list of types

public sealed interface FrontEndDeveloper permits Javascripter, Htmler

https://howtodoinjava.com/java14/pattern-matching-instanceof/
https://howtodoinjava.com/java14/java-text-blocks/
https://howtodoinjava.com/java14/helpful-nullpointerexception/
https://howtodoinjava.com/java14/java-14-record-type/
https://howtodoinjava.com/java14/switch-expressions/
https://mkyong.com/java/what-is-new-in-java-15/#jep-339-edwards-curve-digital-signature-algorithm-eddsa
https://mkyong.com/java/what-is-new-in-java-15/#jep-360-sealed-classes-preview

292 | P A G E Satya Kaveti

• JEP 371: Hidden Classes

• JEP 372: Remove the Nashorn JavaScript Engine

• JEP 373: Reimplement the Legacy DatagramSocket API

• JEP 374: Disable and Deprecate Biased Locking

• JEP 375: Pattern Matching for instanceof (Second Preview)

• JEP 377: ZGC: A Scalable Low-Latency Garbage Collector

• JEP 378: Text Blocks(Finally Realeased)

• JEP 379: Shenandoah: A Low-Pause-Time Garbage Collector

• JEP 383: Foreign-Memory Access API (Second Incubator)

• JEP 384: Records (Second Preview)

• JEP 385: Deprecate RMI Activation for Removal

Java 16 (March 2021) – Latest

1. JEP 338: Vector API (Incubator)

2. JEP 347: Enable C++14 Language Features

3. JEP 357: Migrate from Mercurial to Git

4. JEP 369: Migrate to GitHub

5. JEP 376: ZGC: Concurrent Thread-Stack Processing

6. JEP 380: Unix-Domain Socket Channels

7. JEP 386: Alpine Linux Port

8. JEP 387: Elastic Metaspace

9. JEP 388: Windows/AArch64 Port

10. JEP 389: Foreign Linker API (Incubator)

11. JEP 390: Warnings for Value-Based Classes

12. JEP 392: Packaging Tool

13. JEP 393: Foreign-Memory Access API (Third Incubator)

14. JEP 394: Pattern Matching for instanceof

15. JEP 395: Records

16. JEP 396: Strongly Encapsulate JDK Internals by Default

17. JEP 397: Sealed Classes (Second Preview)

More .. https://en.wikipedia.org/wiki/Java_version_history

https://mkyong.com/java/what-is-new-in-java-15/#jep-371hidden-classes
https://mkyong.com/java/what-is-new-in-java-15/#jep-372remove-the-nashorn-javascript-engine
https://mkyong.com/java/what-is-new-in-java-15/#jep-373reimplement-the-legacy-datagramsocket-api
https://mkyong.com/java/what-is-new-in-java-15/#jep-374disable-and-deprecate-biased-locking
https://mkyong.com/java/what-is-new-in-java-15/#jep-375pattern-matching-for-instanceof-second-preview
https://mkyong.com/java/what-is-new-in-java-15/#jep-377zgc-a-scalable-low-latency-garbage-collector
https://mkyong.com/java/what-is-new-in-java-15/#jep-378text-blocks
https://mkyong.com/java/what-is-new-in-java-15/#jep-379shenandoah-a-low-pause-time-garbage-collector
https://mkyong.com/java/what-is-new-in-java-15/#jep-383foreign-memory-access-api-second-incubator
https://mkyong.com/java/what-is-new-in-java-15/#jep-384records-second-preview
https://mkyong.com/java/what-is-new-in-java-15/#jep-385deprecate-rmi-activation-for-removal
https://mkyong.com/java/what-is-new-in-java-16/#jep-338-vector-api-incubator
https://mkyong.com/java/what-is-new-in-java-16/#jep-347enable-c14-language-features
https://mkyong.com/java/what-is-new-in-java-16/#jep-357-migrate-from-mercurial-to-git
https://mkyong.com/java/what-is-new-in-java-16/#jep-369-migrate-to-github
https://mkyong.com/java/what-is-new-in-java-16/#jep-376-zgc-concurrent-thread-stack-processing
https://mkyong.com/java/what-is-new-in-java-16/#jep-380-unix-domain-socket-channels
https://mkyong.com/java/what-is-new-in-java-16/#jep-386-alpine-linux-port
https://mkyong.com/java/what-is-new-in-java-16/#jep-387-elastic-metaspace
https://mkyong.com/java/what-is-new-in-java-16/#jep-388-windowsaarch64-port
https://mkyong.com/java/what-is-new-in-java-16/#jep-389-foreign-linker-api-incubator
https://mkyong.com/java/what-is-new-in-java-16/#jep-390-warnings-for-value-based-classes
https://mkyong.com/java/what-is-new-in-java-16/#jep-392-packaging-tool
https://mkyong.com/java/what-is-new-in-java-16/#jep-393-foreign-memory-access-api-third-incubator
https://mkyong.com/java/what-is-new-in-java-16/#jep-394-pattern-matching-for-instanceof
https://mkyong.com/java/what-is-new-in-java-16/#jep-395-records
https://mkyong.com/java/what-is-new-in-java-16/#jep-396-strongly-encapsulate-jdk-internals-by-default
https://mkyong.com/java/what-is-new-in-java-16/#jep-397-sealed-classes-second-preview
https://en.wikipedia.org/wiki/Java_version_history

293 | P A G E Satya Kaveti

294 | P A G E Satya Kaveti

Ref.
https://srikarbandla.wordpress.com/2015/07/31/static-control-flow/

https://howtodoinjava.com/java-version-wise-features-history/

https://www.marcobehler.com/guides/a-guide-to-java-versions-and-features#_java_features_8_16

https://srikarbandla.wordpress.com/2015/07/31/static-control-flow/
https://howtodoinjava.com/java-version-wise-features-history/
https://www.marcobehler.com/guides/a-guide-to-java-versions-and-features#_java_features_8_16

	Table of Content
	1.Language Fundamentals
	Features of Java
	Java – JDK, JRE and JVM
	Identifiers
	Keywords
	Comments
	Datatypes
	Literals
	1.Integral Literal:
	2.Floating – Point literals
	3. Character literal

	Arrays
	1.Declaring Arrays
	2.Construction of Arrays
	3.Initialization of arrays
	4.Declaration and Initialization Array in a single line
	5.length Vs length();

	Types of Variables
	1.Instance Variables
	2.Staic Variables
	3.Local variables

	main() method
	Operators
	Numeric Promotion Rules
	1.Increment/ Decrement
	Equality Operators (==)
	Conditional Statements

	Flow Control
	1.if-else :
	2.Switch:
	1.While:
	2.do-while:
	3.for:
	1.break:
	2.continue:

	Fundamentals – Interview Questions
	Difference between interpreter and JIT compiler?
	Difference between JRE and JVM?
	Difference Between JVM & HotSpot VM
	How does WeakHashMap work?
	How do you locate memory usage from a Java program?
	What is ClassLoader in Java?
	Java heap memory

	Data Types
	How do you convert bytes to String?
	Is ++ operator is thread-safe in Java?
	What will this return 3*0.1 == 0.3? true or false?
	How to convert Primitives to Wrapper & Wrapper to Primitive ??
	Autoboxing and Unboxing?
	what if I make main() private/protected ?

	2.Class Declaration & Access Modifiers
	Java Source File Structure
	Java Access Modifiers
	Class Modifiers – Applicable only for classes
	final:
	abstract:
	strictfp:

	Member modifiers – Applicable for methods & variables
	6.Static
	7.native modifier
	8. Synchronized
	9.Transient Modifier
	10.Volatile

	Nested Classes
	1. Inner Classes
	2. Static Nested Classes (Nested Classes)
	3. Local Inner Classes
	4. Anonymous Inner Classes
	Nested Interface

	3. Interfaces
	Naming conflicts in interfaces
	Marker Interface
	Interface Enhancements
	interface Default Methods: Java 8
	interface Static Methods: Java 8
	Interface Private Methods – Java 9
	Functional Interfaces

	4.OOPS
	1.Data Hiding
	2.Abstraction
	3. Encapsulation
	Tightly Encapsulated Class

	4. Inheritance
	IS-A Relationship
	Has-A Relationship
	Association
	Aggregation
	Composition

	Uses-A Relationship
	Overloading
	Overriding

	4. Static & Instance Control flows
	Static Blocks
	Static Control Flow
	Instance Control flow
	Combining Both

	5. Constructor

	5.Exception Handling
	Default Exception Handling
	Exception Hierarchy
	1.Exception
	2.Error

	Using try, catch, finally
	Throws
	Throw

	User Defined Exceptions
	Exception Handling with Method Overriding in Java
	Java 1.7 Exception handling Enhancements
	Java try-with-resources
	Catch with Multiple Exception classes

	Exception Handling Interview Questions
	What will happen if you put System.exit(0) on try or catch block?
	What happens if we put return statement on try/catch? Will finally block execute?
	What happens when a finally block has a return statement?
	Why do you think Checked Exception exists in Java, since we can also convey error using RuntimeException?
	Have you faced OutOfMemoryError in Java? How did you solve that?

	6. java. lang package
	1.Object Class
	1. Shallow copy Cloning – Default Implementation
	2. Deeply copy Cloning – Override clone method

	2.String Class
	Case 1 : literal VS Object
	Case 2:
	Case 3:
	Case 4:
	Case 5 : (+= uses StringBuilder Inside to Create & Append String)
	Performance

	3,4.StringBuffer, StringBuilder Classes
	1.What is immutable object? Can you write immutable object?
	2.What is Singleton? Can you write critical section code for singleton?
	How do you reverse a String in Java without using StringBuffer?
	How to Print duplicate characters from String?
	How to Check given String contains Number or not
	Reverse Words in a String

	5.Wrapper classes
	Primitive type to wrapper class
	Wrapper class to primitive type
	Autoboxing and Unboxing
	Wrapper Classes Internal Caching

	Garbage collection
	The ways to make an object eligible for Garbage Collector
	1.Nullifying the reference Variable
	2. Reassigning the reference Variable
	3.The Objects Created inside a method
	4. The Island of Isolation
	5.Static variables Garbage Collection

	What are the methods to request JVM to run Garbage Collector?
	finalize()
	Types of Garbage Collectors
	1. Serial Garbage Collector
	2. Parallel Garbage Collector
	3. CMS Garbage Collector
	4. G1 Garbage Collector
	1.Young Generation in G1
	Old Generation Collection with G1

	Garbage Collection JVM Options

	Java Reflection API (java.lang.Class)
	1. Java.lang.Class

	Interview Questions
	Can a top-level class be private or protected?
	What Happens if we compile Empty java file?
	Is it possible to make array volatile in Java?
	What is a.hashCode() used for? How is it related to a.equals(b)?
	Explain Liskov Substitution Principle.
	What is a compile time constant in Java? What is the risk of using it?
	What is double checked locking in Singleton?
	When to use volatile variable in Java?
	How to create an instance of any class without using new keyword

	7. java.io
	Byte Streams
	Character Streams
	Buffered Streams
	Data Streams
	Object Streams
	1.Serialization
	2.Deserialization
	Transient Keyword

	3. Externalization

	printf and format Methods
	Java NIO(Non-blocking I/O) -1.4

	8.Threads
	Introduction to Multi-threading
	Context Switch

	What is Thread
	Thread Life Cycles (Thread States)
	java.lang.Thread class
	java.lang.Runnable Interface
	Interrupting a Thread
	Joining a Thread (join () method)
	Thread Priority
	Daemon Thread
	Thread Group
	Synchronization
	1. Synchronized Instance methods:
	2. Synchronized static method
	3. Synchronized block:

	Inter Thread Communication
	1. What is a Monitor?
	2 Difference between lock and monitor
	3 Difference between wait and sleep

	Callable Interface

	9. java.util.Concurrency
	Lock Interface
	ReentrantLock Class

	ReadWriteLock interface
	ReentrantReadWriteLock class

	Conditions

	10. Executor Framework – ThreadPools
	Types of ThreadPools
	ExecutorService API
	1.Executors Utility class
	2.Executor Interface
	3.ExecutorService Interface
	Callable Interface
	Feature Interface

	4.ScheduledExecutorService Interface
	5.Fork/Join
	ForkJoinPool
	ForkJoinTask

	6.Custom ThreadPool

	Synchronization utilities – more options for doing Synchronization
	1.Semaphore(CountDownSemaphore)
	2.Binary Semaphore(Mutex)
	3.CountDownLatch
	4.CyclicBrarrier
	5.Phaser
	6.Exchanger

	Atomic Variables
	What is false sharing in the context of multi-threading?
	Volatile Example
	Atomic Problem
	Atomic Variables

	Terms
	Threads Interview Questions
	What happens if we start same Thread(ob) Twice?
	What guarantee volatile variable provides?
	What is busy spin?
	Why Swing is not thread-safe in Java?
	What is a ThreadLocal variable in Java?
	Difference between Runnable and Callable in Java?
	How to stop a thread in Java?
	What is Semaphore in Java?
	How do you ensure that N thread can access N resources without deadlock?
	What is busy spin, and why should you use it?
	What’s the difference between Callable and Runnable?
	Object level and Class level locks in Java
	Producer-Consumer solution using threads in Java
	Thread. yield ()
	What do you understand about Thread Priority?
	How can we make sure main() is the last thread to finish in Java Program?
	Why wait(), notify() and notifyAll() methods have to be called from synchronized method or block?
	How can we achieve thread safety in Java?
	What is volatile keyword in Java
	What is ThreadLocal?
	What is BlockingQueue? implement Producer-Consumer using Blocking Queue?
	What is Executors Class?

	11.Collections Framework
	Traditional Data Structures
	Analysis of Algorithms?

	Types of Data Structures
	1.Linked List
	Simple Linked List
	Doubly Linked List
	Circular Linked List

	2.Stack
	3.Queue
	4.Trees
	Binary Tree
	Binary Search Tree
	AVL Trees

	Sorting Algorithms
	Bubble Sort Algorithm
	Insertion Sort – Pick & Insert in Correct order using Sorted Sub list
	Selection Sort
	Merge Sort Algorithm
	Quick Sort

	Searching Algorithms
	Linear Search
	Binary Search Algorithm

	Java Collections Framework
	List
	ArrayList – Internal implementation
	LinkedList– Internal implementation
	Vector– Internal implementation (Synchronized - Same as ArrayList)
	Stack– Internal implementation

	Map
	HashMap – Internal implementation (HashTable)
	How to avoid Hash Collision

	LinkedHashMap – Internal implementation
	TreeMap – Internal implementation
	IdentityHashMap
	WeakHashMap
	Legacy Classes on Map
	1.Hashtable
	2 Properties

	Set
	HashSet – Internal implementation
	LinkedHashSet – Internal implementation
	TreeSet – Internal implementation
	java.util.SortedSet (Interface)

	Comparable & Comparator
	Queue
	PriorityQueue – Internal implementation

	Deque (Double Ended Queue)
	ArrayDeque – Internal implementation

	Concurrent Collections
	List – CopyOnWriteArrayList
	Set – CopyOnWriteArraySet, ConcurrentSkipListSet
	CopyOnWriteArraySet

	Map – ConcurrentMap (ConcurrentHashMap, ConcurrentSkipListMap
	ConcurrentMap:

	Queue – BlockingQueue (PriorityBlockingQueue ,ArrayBlockingQueue,
	Deque - ConcurrentLinkedDeque

	Java.util.Arrays
	java.util.Collections class

	12. Stream API
	Functional Interfaces
	Lambdas
	Streams
	1. Creating Streams
	2. Stream Operations
	Collectors & collect method
	1. Stream.forEach(consumer):
	2. Stream.filter()
	3. Stream.map()
	4. Stream.sorted()
	5. Stream.distinct()
	5. Stream.collect() :: Collection
	6. Stream.match() :: boolean
	7. Stream.count() :: Integer/Any Number
	8. Stream.reduce()
	9. Stream.anyMatch() :: Boolean
	10. Stream.findFirst()
	11. flatMap()
	12. toArray

	3. Parallel Streams
	Examples
	1.Count Occurrences of a Char in a String
	Counting Empty String
	Map & joining
	Statistics: Get count, min, max, sum, and the average for numbers

	Ref.

	13.Java UI (Applets/Swings)
	1. Applet Basics
	2. Swing Basics
	3. AWT (abstract windowing toolkit)
	4. Events Handling
	5. Components

	Features by Version
	Java 4 (2002)
	RMI(1.1V)
	JDBC(1.1V) -
	Assertions
	RegExp
	Logging API

	Java 5 (2005)
	Annotations
	Autoboxing
	Generics
	Covariant Return Type (Java 5)
	Enhanced for loop
	Var-args
	Enums
	Static imports
	C-lang printf()

	Java 7 (2011)
	Underscores in Numeric Literals (Java 7)
	String in switch statement (Java 7)
	The try-with-resources (Java 7)
	Caching Multiple Exceptions by single catch (Java 7)
	Diamond operator <>, removes right side of generics

	Java 8 (2014)
	Functional Interfaces (Java 8)
	Lambda Expressions (Java 8)
	Stream (Java 8)
	Default Methods & Static methods Interface (Java 8)
	Java 8 Date/Time API (Java 8)
	Optional Class

	Java 9 (2017)
	JShell: The Java Shell (REPL)
	Module System (Project Jigsaw)
	Interface Private Methods
	Multi-Release JAR Files

	Java10 (March 2018)
	Local Variable Type Inference
	Time-Based Release Versioning
	Garbage Collector Interface

	Java 11 (September 2018)
	Running Java File with single command
	Java String Methods

	Java 12 (March 2019)
	Java 13 (September 2019)
	Java 14 (March 2020)
	Java 15 (September 2020)
	Java 16 (March 2021) – Latest

	Ref.

